Skip to main content
Top
Published in: International Ophthalmology 12/2019

01-12-2019 | Angiography | Original Paper

Swept source-OCT and swept source-OCT angiography findings in posterior microphthalmos

Authors: Nesrine Abroug, Imen Ksiaa, Marco Lupidi, Wejdene Nabi, Sonia Attia, Bechir Jelliti, Sana Khochtali, Moncef Khairallah

Published in: International Ophthalmology | Issue 12/2019

Login to get access

Abstract

Purpose

To describe swept source-OCT (SS-OCT) and swept source-OCT angiography (SS-OCTA) findings in eyes with posterior microphthalmos (PM).

Methods

Twelve eyes (six patients) with PM were evaluated using SS-OCT and SS-OCTA. Structural changes, subfoveal choroidal thickness (SFCT), and perifoveal capillary changes with qualitative and quantitative assessments were analyzed. Twenty eyes served as control group.

Results

SS-OCT findings included elevated retinal papillo-macular fold (75%), retinal pigment epithelium folds (83%), macular cystoid spaces (42%), subretinal fluid (17%), and increased visibility of posterior vitreous cortex and hyaloid (42%). Mean SFCT in PM and in control eyes were 430.33 ± 157.48 µm and 290.05 ± 52.87 µm, respectively (p = 0.004). Perifoveal capillary changes on SS-OCTA included foveal avascular zone (FAZ) remodeling (100%), vessel tortuosity (67%), disorganization of the deep capillary network (67%), intraretinal cystoid spaces (42%), and areas of signal voids in the choriocapillaris (33%). FAZ area was significantly smaller in eyes with PM than in the control group in both the superficial (p < 0.001) and deep capillary plexuses (p = 0.001). Capillary vessel density (CVD) was significantly lower in the PM than in the control group in the deep capillary plexus (p = 0.004). Log MAR BCVA correlated negatively with axial length (r = − 0.929, p < 0.001), FAZ area in both the superficial (r = − 0.637, p < 0.001) and deep capillary plexus (r = − 0.561, p = 0002), and CVD in the deep capillary plexus (r = − 0.450, p = 0.016).

Conclusions

Combined SS-OCT and SS-OCTA allow the detection of various retinal and choroidal structural and microvascular changes in eyes with PM. These findings can provide new insights onto this blinding ocular condition.
Literature
1.
go back to reference Spitznas M, Gerke E, Bateman VB (1983) Hereditary posterior microphthalmos with papillomacular fold and high hyperopia. Arch Ophthalmol 101:413–417PubMedCrossRef Spitznas M, Gerke E, Bateman VB (1983) Hereditary posterior microphthalmos with papillomacular fold and high hyperopia. Arch Ophthalmol 101:413–417PubMedCrossRef
2.
go back to reference Boynton JR, Purnell EW (1975) Bilateral microphthalmos without microcornea associated with unusual papillomacular retinal folds and high hyperopia. Am J Ophthalmol 79:820–826PubMedCrossRef Boynton JR, Purnell EW (1975) Bilateral microphthalmos without microcornea associated with unusual papillomacular retinal folds and high hyperopia. Am J Ophthalmol 79:820–826PubMedCrossRef
3.
go back to reference Khairallah M, Messaoud R, Zaouali S, Ben Yahia S, Ladjimi A, Jenzri S (2002) Posterior segment changes associated with posterior microphthalmos. Ophthalmology 109:569–574PubMedCrossRef Khairallah M, Messaoud R, Zaouali S, Ben Yahia S, Ladjimi A, Jenzri S (2002) Posterior segment changes associated with posterior microphthalmos. Ophthalmology 109:569–574PubMedCrossRef
4.
go back to reference Walsh MK, Goldberg MF (2007) Abnormal foveal avascular zone in nanophthalmos. Am J Ophthalmol 143:1067–1068PubMedCrossRef Walsh MK, Goldberg MF (2007) Abnormal foveal avascular zone in nanophthalmos. Am J Ophthalmol 143:1067–1068PubMedCrossRef
5.
go back to reference Nowilaty SR, Mousa A, Ghazi NG (2013) The posterior pole and papillomacular fold in posterior microphthalmos: novel spectral-domain optical coherence tomography findings. Ophthalmology 120:1656–1664PubMedCrossRef Nowilaty SR, Mousa A, Ghazi NG (2013) The posterior pole and papillomacular fold in posterior microphthalmos: novel spectral-domain optical coherence tomography findings. Ophthalmology 120:1656–1664PubMedCrossRef
6.
go back to reference Nowilaty SR, Khan AO, Aldahmesh MA, Tabbara KF, Al-Amri A, Alkuraya FS (2013) Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. Am J Ophthalmol 155:361–372.e7PubMedCrossRef Nowilaty SR, Khan AO, Aldahmesh MA, Tabbara KF, Al-Amri A, Alkuraya FS (2013) Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. Am J Ophthalmol 155:361–372.e7PubMedCrossRef
7.
go back to reference Jackson TE, Yang YC, Shun-Shin GA (2012) Spectral domain optical coherence tomography findings in retinal folds associated with posterior microphthalmos. J AAPOS 16:389–391PubMedCrossRef Jackson TE, Yang YC, Shun-Shin GA (2012) Spectral domain optical coherence tomography findings in retinal folds associated with posterior microphthalmos. J AAPOS 16:389–391PubMedCrossRef
8.
go back to reference Aras C, Ozdamar A, Ustundag C, Ozkan S (2005) Optical coherence tomographic features of papillomacular fold in posterior microphthalmos. Retina 25:665–667PubMedCrossRef Aras C, Ozdamar A, Ustundag C, Ozkan S (2005) Optical coherence tomographic features of papillomacular fold in posterior microphthalmos. Retina 25:665–667PubMedCrossRef
9.
go back to reference Kumar M, Das T, Kesarwani S (2012) Spectral domain optical coherence tomography finding in posterior microphthalmos. Clin Exp Optom 95:651–652PubMedCrossRef Kumar M, Das T, Kesarwani S (2012) Spectral domain optical coherence tomography finding in posterior microphthalmos. Clin Exp Optom 95:651–652PubMedCrossRef
10.
go back to reference Liu JJ, Chen YY, Zhang X, Zhao PQ (2018) Clinical features of posterior microphthalmic and nanophthalmic eyes. Int J Ophthalmol 11:1829–1834PubMedPubMedCentral Liu JJ, Chen YY, Zhang X, Zhao PQ (2018) Clinical features of posterior microphthalmic and nanophthalmic eyes. Int J Ophthalmol 11:1829–1834PubMedPubMedCentral
11.
go back to reference Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55PubMedCrossRef Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55PubMedCrossRef
12.
go back to reference Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT362–OCT370PubMedPubMedCentralCrossRef Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT362–OCT370PubMedPubMedCentralCrossRef
13.
go back to reference Pichi F, Sarraf D, Arepalli S et al (2017) The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 59:178–201PubMedCrossRef Pichi F, Sarraf D, Arepalli S et al (2017) The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 59:178–201PubMedCrossRef
14.
go back to reference Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRef
15.
go back to reference Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R et al (2017) Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci 58:2063–2069PubMedCrossRef Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R et al (2017) Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci 58:2063–2069PubMedCrossRef
16.
go back to reference Demircan A, Altan C, Osmanbasoglu OA et al (2014) Subfoveal choroidal thickness measurements with enhanced depth imaging optical coherence tomography in patients with nanophthalmos. Br J Ophthalmol 98:345–349PubMedCrossRef Demircan A, Altan C, Osmanbasoglu OA et al (2014) Subfoveal choroidal thickness measurements with enhanced depth imaging optical coherence tomography in patients with nanophthalmos. Br J Ophthalmol 98:345–349PubMedCrossRef
17.
go back to reference Matsuo Y, Sakamoto T, Yamashita T et al (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54:7630–7636PubMedCrossRef Matsuo Y, Sakamoto T, Yamashita T et al (2013) Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Invest Ophthalmol Vis Sci 54:7630–7636PubMedCrossRef
18.
go back to reference Ikuno Y, Maruko I, Yasuno Y et al (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 52:5536–5540PubMedCrossRef Ikuno Y, Maruko I, Yasuno Y et al (2011) Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci 52:5536–5540PubMedCrossRef
19.
go back to reference Tan CS, Ngo WK, Cheong KX (2015) Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol 99:354–358PubMedCrossRef Tan CS, Ngo WK, Cheong KX (2015) Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes. Br J Ophthalmol 99:354–358PubMedCrossRef
20.
go back to reference Chee SP, Chan SN, Jap A (2017) Comparison of enhanced depth imaging and swept source optical coherence tomography in assessment of choroidal thickness in Vogt–Koyanagi–Harada disease. Ocul Immunol Inflamm 25:528–532PubMedCrossRef Chee SP, Chan SN, Jap A (2017) Comparison of enhanced depth imaging and swept source optical coherence tomography in assessment of choroidal thickness in Vogt–Koyanagi–Harada disease. Ocul Immunol Inflamm 25:528–532PubMedCrossRef
21.
go back to reference Brockhurst RJ (1975) Nanophthalmos with uveal effusion. A new clinical entity. Arch Ophthalmol 93:1989–1999 Brockhurst RJ (1975) Nanophthalmos with uveal effusion. A new clinical entity. Arch Ophthalmol 93:1989–1999
22.
go back to reference Gass JD (1983) Uveal effusion syndrome: a new hypothesis concerning pathogenesis and technique of surgical treatment. Trans Am Ophthalmol Soc 81:246–260PubMedPubMedCentral Gass JD (1983) Uveal effusion syndrome: a new hypothesis concerning pathogenesis and technique of surgical treatment. Trans Am Ophthalmol Soc 81:246–260PubMedPubMedCentral
27.
go back to reference Wei WB, Xu L, Jonas JB et al (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180PubMedCrossRef Wei WB, Xu L, Jonas JB et al (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180PubMedCrossRef
28.
go back to reference Ikuno Y, Kawaguchi K, NouchiT Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173–2176PubMedCrossRef Ikuno Y, Kawaguchi K, NouchiT Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173–2176PubMedCrossRef
Metadata
Title
Swept source-OCT and swept source-OCT angiography findings in posterior microphthalmos
Authors
Nesrine Abroug
Imen Ksiaa
Marco Lupidi
Wejdene Nabi
Sonia Attia
Bechir Jelliti
Sana Khochtali
Moncef Khairallah
Publication date
01-12-2019
Publisher
Springer Netherlands
Keyword
Angiography
Published in
International Ophthalmology / Issue 12/2019
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-019-01115-7

Other articles of this Issue 12/2019

International Ophthalmology 12/2019 Go to the issue