Skip to main content
Top
Published in: Annals of Intensive Care 1/2020

Open Access 01-12-2020 | Angiography | Review

Retinal blood flow in critical illness and systemic disease: a review

Authors: E. Courtie, T. Veenith, A. Logan, A. K. Denniston, R. J. Blanch

Published in: Annals of Intensive Care | Issue 1/2020

Login to get access

Abstract

Background

Assessment and maintenance of end-organ perfusion are key to resuscitation in critical illness, although there are limited direct methods or proxy measures to assess cerebral perfusion. Novel non-invasive methods of monitoring microcirculation in critically ill patients offer the potential for real-time updates to improve patient outcomes.

Main body

Parallel mechanisms autoregulate retinal and cerebral microcirculation to maintain blood flow to meet metabolic demands across a range of perfusion pressures. Cerebral blood flow (CBF) is reduced and autoregulation impaired in sepsis, but current methods to image CBF do not reproducibly assess the microcirculation. Peripheral microcirculatory blood flow may be imaged in sublingual and conjunctival mucosa and is impaired in sepsis. Retinal microcirculation can be directly imaged by optical coherence tomography angiography (OCTA) during perfusion-deficit states such as sepsis, and other systemic haemodynamic disturbances such as acute coronary syndrome, and systemic inflammatory conditions such as inflammatory bowel disease.

Conclusion

Monitoring microcirculatory flow offers the potential to enhance monitoring in the care of critically ill patients, and imaging retinal blood flow during critical illness offers a potential biomarker for cerebral microcirculatory perfusion.
Literature
1.
go back to reference Bäckman CG, Ahlberg M. Group meetings after critical illness—giving and receiving strength. Intensive Crit Care Nurs. 2018;46:86–91. PubMedCrossRef Bäckman CG, Ahlberg M. Group meetings after critical illness—giving and receiving strength. Intensive Crit Care Nurs. 2018;46:86–91. PubMedCrossRef
2.
3.
go back to reference Rudd K, Johnson S, Agesa A, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11. PubMedPubMedCentralCrossRef Rudd K, Johnson S, Agesa A, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–11. PubMedPubMedCentralCrossRef
4.
go back to reference De Backer D, Orbegozo Cortes D. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5:73–9. PubMedCrossRef De Backer D, Orbegozo Cortes D. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5:73–9. PubMedCrossRef
5.
go back to reference Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7. PubMedPubMedCentralCrossRef Trzeciak S, McCoy JV, Phillip Dellinger R, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7. PubMedPubMedCentralCrossRef
6.
go back to reference Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: an overview. J Transl Intern Med. 2017;5:90–2. CrossRef Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: an overview. J Transl Intern Med. 2017;5:90–2. CrossRef
7.
go back to reference Asfar P, Meziani F, Hamel J-F, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93. PubMedCrossRef Asfar P, Meziani F, Hamel J-F, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93. PubMedCrossRef
8.
go back to reference Hessler M, Nelis P, Ertmer C, et al. Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: a proof of principle study. Sci Rep Nat Res. 2020;10:5408. CrossRef Hessler M, Nelis P, Ertmer C, et al. Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: a proof of principle study. Sci Rep Nat Res. 2020;10:5408. CrossRef
9.
go back to reference De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9. PubMedCrossRef De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9. PubMedCrossRef
10.
12.
go back to reference Crippa IA, Subirà C, Vincent JL, et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis. Crit Care. 2018;22:327. PubMedPubMedCentralCrossRef Crippa IA, Subirà C, Vincent JL, et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis. Crit Care. 2018;22:327. PubMedPubMedCentralCrossRef
13.
go back to reference Donnelly J, Budohoski KP, Smielewski P, et al.: Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care 2016; 18 Donnelly J, Budohoski KP, Smielewski P, et al.: Regulation of the cerebral circulation: bedside assessment and clinical implications. Crit Care 2016; 18
14.
go back to reference Schwartz M, London A. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53. PubMedCrossRef Schwartz M, London A. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53. PubMedCrossRef
15.
go back to reference Chua J, Chin CWL, Hong J, et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens. 2019;37:572–80. PubMedCrossRef Chua J, Chin CWL, Hong J, et al. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens. 2019;37:572–80. PubMedCrossRef
16.
go back to reference Nakayama L. Retinal Avascular Foveal Zone as a systemic biomarker to evaluate inflammatory bowel disease control. Invest Ophthalmol Vis Sci. 2019;60:4572. Nakayama L. Retinal Avascular Foveal Zone as a systemic biomarker to evaluate inflammatory bowel disease control. Invest Ophthalmol Vis Sci. 2019;60:4572.
17.
go back to reference Cornette J. Microcirculation in women with severe pre-eclampsia and HELLP syndrome: a case-control study. BJOG. 2014;121:363–70. PubMedCrossRef Cornette J. Microcirculation in women with severe pre-eclampsia and HELLP syndrome: a case-control study. BJOG. 2014;121:363–70. PubMedCrossRef
18.
go back to reference Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, Ferraz D, Korot E, Kelly C, Balaskas K, Denniston AK, Keane PA. Insights into systemic disease through retinal imaging-based oculomics. Trans Vis Sci Tech. 2020;9(2):6. CrossRef Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, Ferraz D, Korot E, Kelly C, Balaskas K, Denniston AK, Keane PA. Insights into systemic disease through retinal imaging-based oculomics. Trans Vis Sci Tech. 2020;9(2):6. CrossRef
19.
go back to reference Fantini S. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics. 2016;3:1–31. CrossRef Fantini S. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics. 2016;3:1–31. CrossRef
20.
go back to reference Cipolla MJ. The cerebral circulation. Morgan and claypool life sciences. California: Morgan and Claypool Life Sciences; 2010. Cipolla MJ. The cerebral circulation. Morgan and claypool life sciences. California: Morgan and Claypool Life Sciences; 2010.
22.
go back to reference Goodson CM, Rosenblatt K. Cerebral blood flow autoregulation in sepsis for the intensivist: why its monitoring may be the future of individualized care. J Intensive Care Med. 2018;33:63–73. PubMedCrossRef Goodson CM, Rosenblatt K. Cerebral blood flow autoregulation in sepsis for the intensivist: why its monitoring may be the future of individualized care. J Intensive Care Med. 2018;33:63–73. PubMedCrossRef
23.
go back to reference Peyrounette M, Davit Y. Multiscale modelling of blood flow in cerebral microcirculation: details at capillary scale control accuracy at the level of the cortex. PLoS ONE. 2018;13:e0189474. PubMedPubMedCentralCrossRef Peyrounette M, Davit Y. Multiscale modelling of blood flow in cerebral microcirculation: details at capillary scale control accuracy at the level of the cortex. PLoS ONE. 2018;13:e0189474. PubMedPubMedCentralCrossRef
24.
go back to reference Kolinko Y, Krakorova K. Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes. Rev Neurosci. 2014;26:75–93. Kolinko Y, Krakorova K. Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes. Rev Neurosci. 2014;26:75–93.
25.
go back to reference Muoio V, Persson PB, Sendeski MM. The neurovascular unit—concept review. Acta Physiol. 2014;210:790–8. CrossRef Muoio V, Persson PB, Sendeski MM. The neurovascular unit—concept review. Acta Physiol. 2014;210:790–8. CrossRef
27.
29.
go back to reference Rosengarten B, Wolff S. Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model. Crit Care. 2009;13:R139. PubMedPubMedCentralCrossRef Rosengarten B, Wolff S. Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model. Crit Care. 2009;13:R139. PubMedPubMedCentralCrossRef
30.
go back to reference Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. PubMedPubMedCentralCrossRef Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. PubMedPubMedCentralCrossRef
31.
go back to reference Snell R, Lemp M. Clinical anatomy of the eye. 2nd ed. Oxford: Blackwell Science, Inc; 1998. Snell R, Lemp M. Clinical anatomy of the eye. 2nd ed. Oxford: Blackwell Science, Inc; 1998.
32.
go back to reference Samara WA, Say EAT, Khoo CTL, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35:2188–95. PubMedCrossRef Samara WA, Say EAT, Khoo CTL, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35:2188–95. PubMedCrossRef
33.
go back to reference Remington LA. Orbital Blood Supply. Clin Anat Physiol Vis Syst. 2011;202–17 Remington LA. Orbital Blood Supply. Clin Anat Physiol Vis Syst. 2011;202–17
34.
go back to reference Simkiene J, Pranskuniene Z, Vitkauskiene A, et al. Ocular microvascular changes in patients with sepsis: a prospective observational study. Ann Intensive Care. 2020;10:38. PubMedPubMedCentralCrossRef Simkiene J, Pranskuniene Z, Vitkauskiene A, et al. Ocular microvascular changes in patients with sepsis: a prospective observational study. Ann Intensive Care. 2020;10:38. PubMedPubMedCentralCrossRef
35.
36.
go back to reference Pournaras CJ. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27:284–330. PubMedCrossRef Pournaras CJ. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27:284–330. PubMedCrossRef
37.
go back to reference Fenstermacher JD. Cerebral Microcirculation. Encycl Neurol Sci. 2014 Fenstermacher JD. Cerebral Microcirculation. Encycl Neurol Sci. 2014
38.
go back to reference Harris A, Ciulla TA. Regulation of Retinal and Optic Nerve Blood Flow. Arch Ophthalmol. 1998;116:1491–5. PubMedCrossRef Harris A, Ciulla TA. Regulation of Retinal and Optic Nerve Blood Flow. Arch Ophthalmol. 1998;116:1491–5. PubMedCrossRef
39.
go back to reference Luo X, Shen YM: Ocular Blood Flow Autoregulation Mechanisms and Methods. J Ophthalmol 2015 Luo X, Shen YM: Ocular Blood Flow Autoregulation Mechanisms and Methods. J Ophthalmol 2015
40.
go back to reference Patton N, Aslam T, Macgillivray T, et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206:319–48. PubMedPubMedCentralCrossRef Patton N, Aslam T, Macgillivray T, et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206:319–48. PubMedPubMedCentralCrossRef
41.
go back to reference Pi S, Hormel TT, Wei X, Cepurna W, et al. Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography. Neurophotonics. 2019;6(4):041104. PubMedPubMedCentralCrossRef Pi S, Hormel TT, Wei X, Cepurna W, et al. Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography. Neurophotonics. 2019;6(4):041104. PubMedPubMedCentralCrossRef
42.
go back to reference Cabrera DeBuc D. Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases. Am J Physiol Heart Circ Physiol. 2017;312:H201–12. PubMedCrossRef Cabrera DeBuc D. Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases. Am J Physiol Heart Circ Physiol. 2017;312:H201–12. PubMedCrossRef
43.
go back to reference Coltman G. Magnetic resonance angiography of the cerebrovascular system. Aust Prescr. 2001;24:435–56. CrossRef Coltman G. Magnetic resonance angiography of the cerebrovascular system. Aust Prescr. 2001;24:435–56. CrossRef
44.
go back to reference Krainik A, Villien M, Troprès I, et al. Functional imaging of cerebral perfusion. Diagn Interv Imaging. 2013;94:1259–78. PubMedCrossRef Krainik A, Villien M, Troprès I, et al. Functional imaging of cerebral perfusion. Diagn Interv Imaging. 2013;94:1259–78. PubMedCrossRef
45.
go back to reference Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6. PubMedPubMedCentralCrossRef Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6. PubMedPubMedCentralCrossRef
46.
go back to reference Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:114. PubMedPubMedCentral Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:114. PubMedPubMedCentral
47.
go back to reference Aliaga M, Forel J-M, De Bourmont S, et al. Diagnostic yield and safety of CT scans in ICU. Intensive Care Med. 2015;41:436–43. PubMedCrossRef Aliaga M, Forel J-M, De Bourmont S, et al. Diagnostic yield and safety of CT scans in ICU. Intensive Care Med. 2015;41:436–43. PubMedCrossRef
48.
go back to reference Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009;103:3–13. CrossRef Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009;103:3–13. CrossRef
49.
go back to reference MacDonald SPJ, Kinnear FB, Arendts G, et al. Near-infrared spectroscopy to predict organ failure and outcome in sepsis: the assessing risk in sepsis using a tissue oxygen saturation (ARISTOS) study. Eur J Emerg Med. 2019;26:174–9. PubMedCrossRef MacDonald SPJ, Kinnear FB, Arendts G, et al. Near-infrared spectroscopy to predict organ failure and outcome in sepsis: the assessing risk in sepsis using a tissue oxygen saturation (ARISTOS) study. Eur J Emerg Med. 2019;26:174–9. PubMedCrossRef
50.
go back to reference Purkayastha S, Sorond F. Transcranial doppler ultrasound: technique and application. Semin Neurol. 2012;32:411–20. PubMedCrossRef Purkayastha S, Sorond F. Transcranial doppler ultrasound: technique and application. Semin Neurol. 2012;32:411–20. PubMedCrossRef
51.
go back to reference Naqvi J. Transcranial doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:629378. PubMedPubMedCentral Naqvi J. Transcranial doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:629378. PubMedPubMedCentral
52.
go back to reference Berg RMG, Plovsing RR, Bailey DM, et al. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis. Clin Physiol Funct Imaging. 2016;36:490–6. PubMedCrossRef Berg RMG, Plovsing RR, Bailey DM, et al. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis. Clin Physiol Funct Imaging. 2016;36:490–6. PubMedCrossRef
53.
go back to reference Schramm P, Klein KU, Falkenberg L, et al. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Crit Care. 2012;16:R181. PubMedPubMedCentralCrossRef Schramm P, Klein KU, Falkenberg L, et al. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Crit Care. 2012;16:R181. PubMedPubMedCentralCrossRef
54.
go back to reference Goedhart PT. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101–14. PubMedCrossRef Goedhart PT. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101–14. PubMedCrossRef
55.
go back to reference Taccone FS, Su F, De Deyne C, et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. 2014;42:114–22. CrossRef Taccone FS, Su F, De Deyne C, et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. 2014;42:114–22. CrossRef
57.
go back to reference Arevalo JF, Krivoy D, Fernandez CF. How Does Optical Coherence Tomography Work? Basic Principles. In: Arevalo JF, eds. Retinal Angiography and Optical Coherence Tomography. New York: Springer New York; 2009. pp. 217–222 Arevalo JF, Krivoy D, Fernandez CF. How Does Optical Coherence Tomography Work? Basic Principles. In: Arevalo JF, eds. Retinal Angiography and Optical Coherence Tomography. New York: Springer New York; 2009. pp. 217–222
58.
go back to reference Hamdan R. Optical coherence tomography: From physical principles to clinical applications. Arch Cardiovasc Dis. 2012;105:529–34. PubMedCrossRef Hamdan R. Optical coherence tomography: From physical principles to clinical applications. Arch Cardiovasc Dis. 2012;105:529–34. PubMedCrossRef
59.
60.
go back to reference Kishi S. Impact of swept source optical coherence tomography on ophthalmology. Taiwan J Ophthalmol. 2016;6:58–68. PubMedCrossRef Kishi S. Impact of swept source optical coherence tomography on ophthalmology. Taiwan J Ophthalmol. 2016;6:58–68. PubMedCrossRef
61.
go back to reference Riva CE, Grunwald JE: Blood velocity and volumetric flow rate in human retinal vessels. 1985; pp. 1124–1132 Riva CE, Grunwald JE: Blood velocity and volumetric flow rate in human retinal vessels. 1985; pp. 1124–1132
62.
go back to reference Garhofer G. Retinal Blood Flow in Healthy Young Subjects. Investig Opthalmol Vis Sci. 2012;53:698–703. CrossRef Garhofer G. Retinal Blood Flow in Healthy Young Subjects. Investig Opthalmol Vis Sci. 2012;53:698–703. CrossRef
63.
go back to reference Garcia JPS Jr, Garcia PT. Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res. 2002;34:295–9. PubMedCrossRef Garcia JPS Jr, Garcia PT. Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res. 2002;34:295–9. PubMedCrossRef
64.
66.
67.
go back to reference Haddock LJ, Kim DY, Mukai S. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol. 2013;2013:1–6. CrossRef Haddock LJ, Kim DY, Mukai S. Simple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyes. J Ophthalmol. 2013;2013:1–6. CrossRef
69.
go back to reference Fayed A, Fawzi A: OCTA vs. Dye: The Pros and Cons. Rev Ophthalmol 2019 Fayed A, Fawzi A: OCTA vs. Dye: The Pros and Cons. Rev Ophthalmol 2019
70.
go back to reference Spaide RF, Klancnik JM. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50. PubMedCrossRef Spaide RF, Klancnik JM. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50. PubMedCrossRef
72.
go back to reference Shin YU, Lee DE, Kang MH, et al. Optical coherence tomography angiography analysis of changes in the retina and the choroid after haemodialysis. Sci Rep. 2018;8:17184. PubMedPubMedCentralCrossRef Shin YU, Lee DE, Kang MH, et al. Optical coherence tomography angiography analysis of changes in the retina and the choroid after haemodialysis. Sci Rep. 2018;8:17184. PubMedPubMedCentralCrossRef
73.
go back to reference de Carlo TE, Romano A. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitr. 2015;1:5. CrossRef de Carlo TE, Romano A. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitr. 2015;1:5. CrossRef
74.
go back to reference Wylęgała A. Principles of OCTA and applications in clinical neurology. Curr Neurol Neurosci Rep. 2018;18(96):1–10. Wylęgała A. Principles of OCTA and applications in clinical neurology. Curr Neurol Neurosci Rep. 2018;18(96):1–10.
75.
go back to reference Arthur E, Elsner AE, Sapoznik KA, et al. Distances from capillaries to arterioles or venules measured using OCTA and AOSLO. Investig Ophthalmol Vis Sci. 2019;60:1833–44. CrossRef Arthur E, Elsner AE, Sapoznik KA, et al. Distances from capillaries to arterioles or venules measured using OCTA and AOSLO. Investig Ophthalmol Vis Sci. 2019;60:1833–44. CrossRef
76.
go back to reference Rocholz R, Corvi F, Weichsel J, et al. OCT Angiography (OCTA) in Retinal Diagnostics. High Resolution Imaging in Microscopy and Ophthalmology. Cham: Springer International Publishing; 2019; pp. 135–160 Rocholz R, Corvi F, Weichsel J, et al. OCT Angiography (OCTA) in Retinal Diagnostics. High Resolution Imaging in Microscopy and Ophthalmology. Cham: Springer International Publishing; 2019; pp. 135–160
77.
go back to reference Li XX, Wu W, Zhou H, et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11(11):1784–95. PubMedPubMedCentral Li XX, Wu W, Zhou H, et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11(11):1784–95. PubMedPubMedCentral
78.
79.
go back to reference Turgut B. Optical coherence tomography angiography—a general view. Eur Ophthalmic Rev. 2016;10:39–42. CrossRef Turgut B. Optical coherence tomography angiography—a general view. Eur Ophthalmic Rev. 2016;10:39–42. CrossRef
80.
go back to reference Kashani AH, Chen C-L, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. PubMedPubMedCentralCrossRef Kashani AH, Chen C-L, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66–100. PubMedPubMedCentralCrossRef
81.
go back to reference Toto L, Borrelli E, Mastropasqua R, et al. Association between outer retinal alterations and microvascular changes in intermediate stage age-related macular degeneration: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101:774–9. PubMedCrossRef Toto L, Borrelli E, Mastropasqua R, et al. Association between outer retinal alterations and microvascular changes in intermediate stage age-related macular degeneration: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101:774–9. PubMedCrossRef
82.
go back to reference Park J, Yongjoo K. Visualisation of 3D microcirculation of rodents’ retinas for studies of critical illness using OCTA. Crit Care Med. 2016;44(12):1455. Park J, Yongjoo K. Visualisation of 3D microcirculation of rodents’ retinas for studies of critical illness using OCTA. Crit Care Med. 2016;44(12):1455.
83.
go back to reference Liu X, Kale AU, Capewell N, et al. Optical coherence tomography (OCT) in unconscious and systemically unwell patients using a mobile OCT device: a pilot study. BMJ Open. 2019;9:e030882. PubMedPubMedCentralCrossRef Liu X, Kale AU, Capewell N, et al. Optical coherence tomography (OCT) in unconscious and systemically unwell patients using a mobile OCT device: a pilot study. BMJ Open. 2019;9:e030882. PubMedPubMedCentralCrossRef
84.
go back to reference Tan ACS. An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond). 2018;32:262–86. CrossRef Tan ACS. An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond). 2018;32:262–86. CrossRef
85.
go back to reference Arya M, Rashad R, Sorour O, et al. Optical coherence tomography angiography (OCTA) flow speed mapping technology for retinal diseases. Expert Rev Med Devices. 2018;15(12):875–82. PubMedPubMedCentralCrossRef Arya M, Rashad R, Sorour O, et al. Optical coherence tomography angiography (OCTA) flow speed mapping technology for retinal diseases. Expert Rev Med Devices. 2018;15(12):875–82. PubMedPubMedCentralCrossRef
86.
go back to reference Borrelli E, Sadda SVR, Uji A, et al. Pearls and pitfalls of optical coherence tomography angiography imaging: a review. Ophthalmol Ther. 2019;8(2):215–26. PubMedPubMedCentralCrossRef Borrelli E, Sadda SVR, Uji A, et al. Pearls and pitfalls of optical coherence tomography angiography imaging: a review. Ophthalmol Ther. 2019;8(2):215–26. PubMedPubMedCentralCrossRef
87.
go back to reference Coscas F, Sellam A, Glacet-Bernard A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Investig Ophthalmol Vis Sci. 2016;57:OCT211–23. CrossRef Coscas F, Sellam A, Glacet-Bernard A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Investig Ophthalmol Vis Sci. 2016;57:OCT211–23. CrossRef
88.
go back to reference Fernández-Vigo JI, Kudsieh B, Shi H, et al. Normative database of peripapillary vessel density measured by optical coherence tomography angiography and correlation study. Curr Eye Res. 2020;45(11):1430–7.PubMedCrossRef Fernández-Vigo JI, Kudsieh B, Shi H, et al. Normative database of peripapillary vessel density measured by optical coherence tomography angiography and correlation study. Curr Eye Res. 2020;45(11):1430–7.PubMedCrossRef
89.
go back to reference Sato R, Kunikata H, Asano T, et al. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: the Taiwa study. Sci Rep. 2019;9:1–11. CrossRef Sato R, Kunikata H, Asano T, et al. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: the Taiwa study. Sci Rep. 2019;9:1–11. CrossRef
90.
go back to reference Fernández-Vigo JI, Kudsieh B, Shi H, et al. Normative database and determinants of macular vessel density measured by optical coherence tomography angiography. Clin Exp Ophthalmol. 2020b;48(1):44–52. PubMedCrossRef Fernández-Vigo JI, Kudsieh B, Shi H, et al. Normative database and determinants of macular vessel density measured by optical coherence tomography angiography. Clin Exp Ophthalmol. 2020b;48(1):44–52. PubMedCrossRef
91.
go back to reference Mihailovic N, Brand C, Lahme L, et al. Repeatability, reproducibility and agreement of foveal avascular zone measurements using three different optical coherence tomography angiography devices. PLoS ONE. 2018;13(10):e0206045. PubMedPubMedCentralCrossRef Mihailovic N, Brand C, Lahme L, et al. Repeatability, reproducibility and agreement of foveal avascular zone measurements using three different optical coherence tomography angiography devices. PLoS ONE. 2018;13(10):e0206045. PubMedPubMedCentralCrossRef
92.
go back to reference Pappelis K, Jansonius NM. Quantification and repeatability of vessel density and flux as assessed by optical coherence tomography angiography. Transl Vis Sci Technol. 2019;8(3):3. PubMedPubMedCentralCrossRef Pappelis K, Jansonius NM. Quantification and repeatability of vessel density and flux as assessed by optical coherence tomography angiography. Transl Vis Sci Technol. 2019;8(3):3. PubMedPubMedCentralCrossRef
93.
go back to reference Lee M-W, Kim K-M, Lim H-B, et al. Repeatability of vessel density measurements using optical coherence tomography angiography in retinal diseases. Br J Ophthalmol. 2019;103:704–10.CrossRef Lee M-W, Kim K-M, Lim H-B, et al. Repeatability of vessel density measurements using optical coherence tomography angiography in retinal diseases. Br J Ophthalmol. 2019;103:704–10.CrossRef
94.
go back to reference Frost S, Brown M, Stirling V, et al. Utility of ward-based retinal photography in stroke patients. J Stroke Cerebrovasc Dis. 2017;26:600–7. PubMedCrossRef Frost S, Brown M, Stirling V, et al. Utility of ward-based retinal photography in stroke patients. J Stroke Cerebrovasc Dis. 2017;26:600–7. PubMedCrossRef
95.
go back to reference Kwapong WR, Ye H, Peng C, et al. Retinal microvascular impairment in the early stages of parkinson’s disease. Investig Opthalmol Vis Sci. 2018;59:4115–22. CrossRef Kwapong WR, Ye H, Peng C, et al. Retinal microvascular impairment in the early stages of parkinson’s disease. Investig Opthalmol Vis Sci. 2018;59:4115–22. CrossRef
96.
go back to reference Lad EM, Mukherjee D, Stinnett SS, et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS ONE. 2018;13:e0192646. PubMedPubMedCentralCrossRef Lad EM, Mukherjee D, Stinnett SS, et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS ONE. 2018;13:e0192646. PubMedPubMedCentralCrossRef
97.
go back to reference Querques G, Borrelli E, Sacconi R, et al. Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci Rep. 2019;9:63. PubMedPubMedCentralCrossRef Querques G, Borrelli E, Sacconi R, et al. Functional and morphological changes of the retinal vessels in Alzheimer’s disease and mild cognitive impairment. Sci Rep. 2019;9:63. PubMedPubMedCentralCrossRef
98.
go back to reference Kersten HM. Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression. J Neurol. 2015;262:2457–65. PubMedCrossRef Kersten HM. Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression. J Neurol. 2015;262:2457–65. PubMedCrossRef
100.
go back to reference Pandharipande P. Long-term cognitive impairment after critical illness: commentary. J Pain Symptom Manage. 2014;369(14):1306–16. Pandharipande P. Long-term cognitive impairment after critical illness: commentary. J Pain Symptom Manage. 2014;369(14):1306–16.
101.
go back to reference Danesh-Meyer HV. Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology. 2006;67:1852–4. PubMedCrossRef Danesh-Meyer HV. Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology. 2006;67:1852–4. PubMedCrossRef
103.
go back to reference Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol. 2018;102:233–7. PubMedCrossRef Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol. 2018;102:233–7. PubMedCrossRef
104.
go back to reference Zhang YS, Zhou N, Knoll BM, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s Disease on optical coherence tomography angiography. PLoS ONE. 2019;14:e0214685. PubMedPubMedCentralCrossRef Zhang YS, Zhou N, Knoll BM, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s Disease on optical coherence tomography angiography. PLoS ONE. 2019;14:e0214685. PubMedPubMedCentralCrossRef
105.
go back to reference Kwa VIH. Retinal arterial changes correlate with cerebral small-vessel disease. Neurology. 2002;59:1536–40. PubMedCrossRef Kwa VIH. Retinal arterial changes correlate with cerebral small-vessel disease. Neurology. 2002;59:1536–40. PubMedCrossRef
106.
go back to reference Eriksson S, Nilsson J, Sturesson C. Non-invasive imaging of microcirculation: a technology review. Med Devices (Auckl). 2014;7:445–52. Eriksson S, Nilsson J, Sturesson C. Non-invasive imaging of microcirculation: a technology review. Med Devices (Auckl). 2014;7:445–52.
107.
go back to reference De Backer D, Creteur J. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104. PubMedCrossRef De Backer D, Creteur J. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104. PubMedCrossRef
108.
go back to reference Kanoore Edul VS, Enrico C, Laviolle B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012;40:1443–8. CrossRef Kanoore Edul VS, Enrico C, Laviolle B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012;40:1443–8. CrossRef
109.
go back to reference Ince C, Boerma EC, Cecconi M, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44(3):281–99. PubMedCrossRef Ince C, Boerma EC, Cecconi M, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44(3):281–99. PubMedCrossRef
110.
go back to reference Sallisalmi M, Oksala N, Pettilä V, et al. Evaluation of sublingual microcirculatory blood flow in the critically ill. Acta Anaesthesiol Scand. 2012;56:298–306. PubMedCrossRef Sallisalmi M, Oksala N, Pettilä V, et al. Evaluation of sublingual microcirculatory blood flow in the critically ill. Acta Anaesthesiol Scand. 2012;56:298–306. PubMedCrossRef
111.
go back to reference Aykut G, Veenstra G, Scorcella C, et al. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015;3:1–10. CrossRef Aykut G, Veenstra G, Scorcella C, et al. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015;3:1–10. CrossRef
112.
go back to reference Hessler M, Arnemann PH, Zamit F, et al. Monitoring of conjunctival microcirculation reflects sublingual microcirculation in ovine septic and hemorrhagic shock. Shock. 2019;51:479–86. PubMedCrossRef Hessler M, Arnemann PH, Zamit F, et al. Monitoring of conjunctival microcirculation reflects sublingual microcirculation in ovine septic and hemorrhagic shock. Shock. 2019;51:479–86. PubMedCrossRef
113.
go back to reference Pranskunas A, Pilvinis V, Dambrauskas Z, et al. Early course of microcirculatory perfusion in eye and digestive tract during hypodynamic sepsis. Crit Care. 2012;16:R83. PubMedPubMedCentralCrossRef Pranskunas A, Pilvinis V, Dambrauskas Z, et al. Early course of microcirculatory perfusion in eye and digestive tract during hypodynamic sepsis. Crit Care. 2012;16:R83. PubMedPubMedCentralCrossRef
114.
go back to reference Terheyden JH. Impaired retinal capillary perfusion assessed by optical coherence tomography angiography in patients with recent systemic hypertensive crisis. Invest Ophthalmol Vis Sci. 2019;60:4573. Terheyden JH. Impaired retinal capillary perfusion assessed by optical coherence tomography angiography in patients with recent systemic hypertensive crisis. Invest Ophthalmol Vis Sci. 2019;60:4573.
115.
go back to reference Alnawaiseh M. Evaluation of ocular perfusion in patients with atrial fibrillation using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60:4570. Alnawaiseh M. Evaluation of ocular perfusion in patients with atrial fibrillation using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60:4570.
116.
go back to reference Arnould L, Guenancia C. The EYE-MI pilot study: a prospective acute coronary syndrome cohort evaluated with retinal optical coherence tomography angiography. Investig Opthalmol Vis Sci. 2018;59:4299. CrossRef Arnould L, Guenancia C. The EYE-MI pilot study: a prospective acute coronary syndrome cohort evaluated with retinal optical coherence tomography angiography. Investig Opthalmol Vis Sci. 2018;59:4299. CrossRef
117.
go back to reference Wang J, Jiang J, Zhang Y, et al. Retinal and choroidal vascular changes in coronary heart disease: an optical coherence tomography angiography study. Biomed Opt Express. 2019;10:1532. PubMedPubMedCentralCrossRef Wang J, Jiang J, Zhang Y, et al. Retinal and choroidal vascular changes in coronary heart disease: an optical coherence tomography angiography study. Biomed Opt Express. 2019;10:1532. PubMedPubMedCentralCrossRef
118.
go back to reference Kılınç Hekimsoy H, Şekeroğlu MA, Koçer AM, et al. Analysis of retinal and choroidal microvasculature in systemic sclerosis: an optical coherence tomography angiography study. Eye. 2020;34:763–70. PubMedCrossRef Kılınç Hekimsoy H, Şekeroğlu MA, Koçer AM, et al. Analysis of retinal and choroidal microvasculature in systemic sclerosis: an optical coherence tomography angiography study. Eye. 2020;34:763–70. PubMedCrossRef
120.
go back to reference Lin BR. Characterizing changes in retinal perfusion in high risk pregnancies with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60:4566. Lin BR. Characterizing changes in retinal perfusion in high risk pregnancies with optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60:4566.
121.
go back to reference Moshiri Y, Legocki AT, Zhou K, et al. Handheld swept-source optical coherence tomography with angiography in awake premature neonates. Quant Imaging Med Surg. 2019;9:1495–502. PubMedPubMedCentralCrossRef Moshiri Y, Legocki AT, Zhou K, et al. Handheld swept-source optical coherence tomography with angiography in awake premature neonates. Quant Imaging Med Surg. 2019;9:1495–502. PubMedPubMedCentralCrossRef
122.
go back to reference Zadeh JK, Ruemmler R, Hartmann EK, et al. Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS). Exp Eye Res. 2019;184:152–61. PubMedCrossRef Zadeh JK, Ruemmler R, Hartmann EK, et al. Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS). Exp Eye Res. 2019;184:152–61. PubMedCrossRef
123.
go back to reference Alnawaiseh M, Ertmer C, Seidel L, et al. Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock. Crit Care. 2018;22:138. PubMedPubMedCentralCrossRef Alnawaiseh M, Ertmer C, Seidel L, et al. Feasibility of optical coherence tomography angiography to assess changes in retinal microcirculation in ovine haemorrhagic shock. Crit Care. 2018;22:138. PubMedPubMedCentralCrossRef
124.
go back to reference Park J. Microcirculatory alterations in hemorrhagic shock and sepsis with optical coherence tomography. Crit Care Med. 2016;44:1424. Park J. Microcirculatory alterations in hemorrhagic shock and sepsis with optical coherence tomography. Crit Care Med. 2016;44:1424.
125.
go back to reference Erikson K, Liisanantti JH, Hautala N, et al. Retinal arterial blood flow and retinal changes in patients with sepsis: preliminary study using fluorescein angiography. Crit Care. 2017;21:86. PubMedPubMedCentralCrossRef Erikson K, Liisanantti JH, Hautala N, et al. Retinal arterial blood flow and retinal changes in patients with sepsis: preliminary study using fluorescein angiography. Crit Care. 2017;21:86. PubMedPubMedCentralCrossRef
126.
go back to reference Simkiene J, Pranskuniene Z, Patasius M et al.: Alterations of retinal vessels in patients with sepsis. J Clin Monit Comput 2019; 1–6 Simkiene J, Pranskuniene Z, Patasius M et al.: Alterations of retinal vessels in patients with sepsis. J Clin Monit Comput 2019; 1–6
127.
go back to reference Ong Y-T, De Silva DA, Cheung CY, et al. Microvascular structure and network in the retina of patients with ischemic stroke. Stroke. 2013;44:2121–7. PubMedCrossRef Ong Y-T, De Silva DA, Cheung CY, et al. Microvascular structure and network in the retina of patients with ischemic stroke. Stroke. 2013;44:2121–7. PubMedCrossRef
128.
go back to reference Lee CW, Cheng HC, Chang FC, et al. Optical coherence tomography angiography evaluation of retinal microvasculature before and after carotid angioplasty and stenting. Sci Rep. 2019;9:14755. PubMedPubMedCentralCrossRef Lee CW, Cheng HC, Chang FC, et al. Optical coherence tomography angiography evaluation of retinal microvasculature before and after carotid angioplasty and stenting. Sci Rep. 2019;9:14755. PubMedPubMedCentralCrossRef
129.
go back to reference Lahme L, Mihailovic N. Evaluation of ocular perfusion in Alzheimer’s Disease using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60:4564. CrossRef Lahme L, Mihailovic N. Evaluation of ocular perfusion in Alzheimer’s Disease using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2019;60:4564. CrossRef
130.
go back to reference Abraham A, Guo X. Retinal microvascular health and what it tells us about cognitive function: the eye determinants of cognition (EyeDOC) study. Invest Ophthalmol Vis Sci. 2019;60:4561. Abraham A, Guo X. Retinal microvascular health and what it tells us about cognitive function: the eye determinants of cognition (EyeDOC) study. Invest Ophthalmol Vis Sci. 2019;60:4561.
131.
go back to reference Wang L, Kwakyi O, Nguyen J, et al. Microvascular blood flow velocities measured with a retinal function imager: inter-eye correlations in healthy controls and an exploration in multiple sclerosis. Eye Vis. 2018;5:29. CrossRef Wang L, Kwakyi O, Nguyen J, et al. Microvascular blood flow velocities measured with a retinal function imager: inter-eye correlations in healthy controls and an exploration in multiple sclerosis. Eye Vis. 2018;5:29. CrossRef
132.
go back to reference Yilmaz H, Ersoy A, Icel E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: an optical coherence tomography angiography study. Eye. 2020;34:771–8. PubMedCrossRef Yilmaz H, Ersoy A, Icel E. Assessments of vessel density and foveal avascular zone metrics in multiple sclerosis: an optical coherence tomography angiography study. Eye. 2020;34:771–8. PubMedCrossRef
133.
go back to reference Lanzillo R, Cennamo G, Criscuolo C. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler J. 2018;24:1706–14. CrossRef Lanzillo R, Cennamo G, Criscuolo C. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler J. 2018;24:1706–14. CrossRef
134.
go back to reference Beare NAV, Harding SP. Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. J Infect Dis. 2009;199:263–71. PubMedCrossRef Beare NAV, Harding SP. Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. J Infect Dis. 2009;199:263–71. PubMedCrossRef
135.
go back to reference Dallorto L, Lavia C, Jeannerot AL, et al.: Retinal microvasculature in pituitary adenoma patients: is optical coherence tomography angiography useful? Acta Ophthalmol 2019; 1–8 Dallorto L, Lavia C, Jeannerot AL, et al.: Retinal microvasculature in pituitary adenoma patients: is optical coherence tomography angiography useful? Acta Ophthalmol 2019; 1–8
136.
go back to reference Suzuki ACF, Zacharias LC, Preti RC, et al. Circumpapillary and macular vessel density assessment by optical coherence tomography angiography in eyes with temporal hemianopia from chiasmal compression. Correlation with retinal neural and visual field loss. Eye. 2020;34:695–703. PubMedCrossRef Suzuki ACF, Zacharias LC, Preti RC, et al. Circumpapillary and macular vessel density assessment by optical coherence tomography angiography in eyes with temporal hemianopia from chiasmal compression. Correlation with retinal neural and visual field loss. Eye. 2020;34:695–703. PubMedCrossRef
137.
go back to reference Lee G-I, Park K-A, Oh SY, et al. Parafoveal and peripapillary perfusion predict visual field recovery in chiasmal compression due to pituitary tumors. J Clin Med. 2020;9:697. PubMedCentralCrossRef Lee G-I, Park K-A, Oh SY, et al. Parafoveal and peripapillary perfusion predict visual field recovery in chiasmal compression due to pituitary tumors. J Clin Med. 2020;9:697. PubMedCentralCrossRef
Metadata
Title
Retinal blood flow in critical illness and systemic disease: a review
Authors
E. Courtie
T. Veenith
A. Logan
A. K. Denniston
R. J. Blanch
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2020
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-020-00768-3

Other articles of this Issue 1/2020

Annals of Intensive Care 1/2020 Go to the issue