Skip to main content
Top
Published in: Acta Diabetologica 12/2019

01-12-2019 | Angiography | Original Article

Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: longitudinal study using OCT angiography

Authors: Kiyoung Kim, Eung Suk Kim, Do Gyun Kim, Seung-Young Yu

Published in: Acta Diabetologica | Issue 12/2019

Login to get access

Abstract

Aims

To investigate the association between progressive macular ganglion cell/inner plexiform layer (mGCIPL) thinning and change of optical coherence tomography angiography (OCTA)-derived microvascular parameters in early-stage diabetic retinopathy (DR).

Methods

A retrospective cohort study involved 40 eyes presenting with no DR or mild non-proliferative DR at baseline, and 30 healthy controls were included. All participants underwent spectral-domain OCT and OCTA at baseline and at 6, 12, 18, and 24 months. Change of mGCIPL thickness and OCTA metrics including foveal avascular zone (FAZ) area and FAZ circularity, vessel density (VD), and perfusion index (PI) was measured. Correlations between mGCIPL thickness and OCTA metrics were explored using regression models.

Results

Average progressive mGCIPL loss was 0.45 µm per year. Three microvascular parameters were significantly impaired at 24 months compared to baseline (FAZ area: 0.34–0.36 mm2, VD: 18.9–18.5/mm, PI: 0.35–0.34). A strong positive correlation was found between loss of mGCIPL and VD from baseline to 24 months (r = 0.817, p < 0.001). Multivariable regression analysis showed that thinner baseline mGCIPL and greater loss of mGCIPL thickness (B = 0.658, p < 0.001) were significantly associated with change of VD.

Conclusions

In the early stage of DR, progressive structural retinal neurodegeneration and parafoveal microvascular change seem to be highly linked. Advanced mGCIPL thinning might precede microvascular impairment in early DR.
Literature
1.
go back to reference Stefansson E, Bek T, Porta M, Larsen N, Kristinsson JK, Agardh E (2000) Screening and prevention of diabetic blindness. Acta Ophthalmol Scand 78:374–385PubMed Stefansson E, Bek T, Porta M, Larsen N, Kristinsson JK, Agardh E (2000) Screening and prevention of diabetic blindness. Acta Ophthalmol Scand 78:374–385PubMed
2.
go back to reference Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. Ophthalmology 98:786–806 Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. Ophthalmology 98:786–806
3.
go back to reference Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Nakamura M (2000) New insights into the pathophysiology of diabetic retinopathy: potential cell-specific therapeutic targets. Diabetes Technol Ther 2:601–608PubMed Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Nakamura M (2000) New insights into the pathophysiology of diabetic retinopathy: potential cell-specific therapeutic targets. Diabetes Technol Ther 2:601–608PubMed
4.
go back to reference Lieth E, Gardner TW, Barber AJ, Antonetti DA (2000) Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol 28:3–8PubMed Lieth E, Gardner TW, Barber AJ, Antonetti DA (2000) Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol 28:3–8PubMed
5.
go back to reference Simo R, Hernandez C (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33PubMed Simo R, Hernandez C (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33PubMed
6.
go back to reference Stem MS, Gardner TW (2013) Neurodegeneration in the pathogenesis of diabetic retinopathy: molecular mechanisms and therapeutic implications. Curr Med Chem 20:3241–3250PubMedPubMedCentral Stem MS, Gardner TW (2013) Neurodegeneration in the pathogenesis of diabetic retinopathy: molecular mechanisms and therapeutic implications. Curr Med Chem 20:3241–3250PubMedPubMedCentral
7.
go back to reference Hammoum I, Benlarbi M, Dellaa A et al (2018) Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 176:174–187PubMed Hammoum I, Benlarbi M, Dellaa A et al (2018) Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 176:174–187PubMed
8.
go back to reference Énzsöly A, Szabó A, Szabó K, Szél Á, Németh J, Lukáts Á (2015) Novel features of neurodegeneration in the inner retina of early diabetic rats. Histol Histopathol 30:971–985PubMed Énzsöly A, Szabó A, Szabó K, Szél Á, Németh J, Lukáts Á (2015) Novel features of neurodegeneration in the inner retina of early diabetic rats. Histol Histopathol 30:971–985PubMed
9.
go back to reference Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17:59–76PubMed Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17:59–76PubMed
10.
go back to reference Kim K, Kim ES, Yu SY (2018) Longitudinal relationship between retinal diabetic neurodegeneration and progression of diabetic retinopathy in patients with type 2 diabetes. Am J Ophthalmol 196:165–172PubMed Kim K, Kim ES, Yu SY (2018) Longitudinal relationship between retinal diabetic neurodegeneration and progression of diabetic retinopathy in patients with type 2 diabetes. Am J Ophthalmol 196:165–172PubMed
11.
go back to reference Jonsson KB, Frydkjaer-Olsen U, Grauslund J (2016) Vascular changes and neurodegeneration in the early stages of diabetic retinopathy: which comes first? Ophthalmic Res 56:1–9PubMed Jonsson KB, Frydkjaer-Olsen U, Grauslund J (2016) Vascular changes and neurodegeneration in the early stages of diabetic retinopathy: which comes first? Ophthalmic Res 56:1–9PubMed
12.
go back to reference Wang Y, Fawzi A, Tan O, Gil-Flamer J, Huang D (2009) Doppler Fourier domain optical coherence tomography. Opt Express 17:4061–4073PubMedPubMedCentral Wang Y, Fawzi A, Tan O, Gil-Flamer J, Huang D (2009) Doppler Fourier domain optical coherence tomography. Opt Express 17:4061–4073PubMedPubMedCentral
13.
go back to reference Burns SA, Elsner AE, Chui TY et al (2014) In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 5:961–974PubMedPubMedCentral Burns SA, Elsner AE, Chui TY et al (2014) In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 5:961–974PubMedPubMedCentral
14.
go back to reference Shahlaee A, Samara WA, Hsu J et al (2016) In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol 165:39–46PubMed Shahlaee A, Samara WA, Hsu J et al (2016) In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol 165:39–46PubMed
15.
go back to reference Di G, Weihong Y, Xiao Z et al (2016) A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 254:873–879PubMed Di G, Weihong Y, Xiao Z et al (2016) A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 254:873–879PubMed
16.
go back to reference Durbin MK, An L, Shemonski ND et al (2017) Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol 135:370–376PubMedPubMedCentral Durbin MK, An L, Shemonski ND et al (2017) Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol 135:370–376PubMedPubMedCentral
17.
go back to reference Kim K, Kim ES, Yu SY (2018) Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. Br J Ophthalmol 102:1226–1231PubMed Kim K, Kim ES, Yu SY (2018) Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. Br J Ophthalmol 102:1226–1231PubMed
18.
go back to reference Srinivasan S, Dehghani C, Pritchard N et al (2017) Corneal and retinal neuronal degeneration in early stages of diabetic retinopathy. Invest Ophthalmol Vis Sci 58:6365–6373PubMed Srinivasan S, Dehghani C, Pritchard N et al (2017) Corneal and retinal neuronal degeneration in early stages of diabetic retinopathy. Invest Ophthalmol Vis Sci 58:6365–6373PubMed
19.
go back to reference El-Fayoumi D, Badr Eldine NM, Esmael AF et al (2016) Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci 57:5355–5360PubMed El-Fayoumi D, Badr Eldine NM, Esmael AF et al (2016) Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci 57:5355–5360PubMed
20.
go back to reference Bronson-Castain KW, Bearse MA Jr, Neuville J et al (2012) Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina 32:92–102PubMedPubMedCentral Bronson-Castain KW, Bearse MA Jr, Neuville J et al (2012) Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina 32:92–102PubMedPubMedCentral
21.
go back to reference Tan W, Wright T, Dupuis A, Lakhani E, Westall C (2014) Localizing functional damage in the neural retina of adolescents and young adults with type 1 diabetes. Invest Ophthalmol Vis Sci 55:2432–2441PubMed Tan W, Wright T, Dupuis A, Lakhani E, Westall C (2014) Localizing functional damage in the neural retina of adolescents and young adults with type 1 diabetes. Invest Ophthalmol Vis Sci 55:2432–2441PubMed
22.
go back to reference Cuenca N, Fernandez-Sanchez L, Campello L et al (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43:17–75PubMed Cuenca N, Fernandez-Sanchez L, Campello L et al (2014) Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 43:17–75PubMed
23.
go back to reference Devi TS, Hosoya K, Terasaki T, Singh LP (2013) Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exp Cell Res 319:1001–1012PubMedPubMedCentral Devi TS, Hosoya K, Terasaki T, Singh LP (2013) Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exp Cell Res 319:1001–1012PubMedPubMedCentral
24.
25.
go back to reference Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alteration in diabetic patients with and without retinopathy. Retina 37:11–21PubMedPubMedCentral Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alteration in diabetic patients with and without retinopathy. Retina 37:11–21PubMedPubMedCentral
26.
go back to reference Nesper PL, Roberts PK, Onishi AC et al (2017) Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:BIO307–BIO315PubMedPubMedCentral Nesper PL, Roberts PK, Onishi AC et al (2017) Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:BIO307–BIO315PubMedPubMedCentral
27.
go back to reference Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 104:989–990PubMed Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 104:989–990PubMed
28.
go back to reference Kim K, Kim ES, Rhee SY, Chon S, Woo JT, Yu SY (2017) Clinical characteristics and risk factors for retinal diabetic neurodegeneration in type 2 diabetes. Acta Diabetol 54:993–999PubMed Kim K, Kim ES, Rhee SY, Chon S, Woo JT, Yu SY (2017) Clinical characteristics and risk factors for retinal diabetic neurodegeneration in type 2 diabetes. Acta Diabetol 54:993–999PubMed
29.
go back to reference Kim K, Yu SY, Kwak HW, Kim ES (2016) Retinal neurodegeneration associated with peripheral nerve conduction and autonomic nerve function in diabetic patients. Am J Ophthalmol 170:15–24PubMed Kim K, Yu SY, Kwak HW, Kim ES (2016) Retinal neurodegeneration associated with peripheral nerve conduction and autonomic nerve function in diabetic patients. Am J Ophthalmol 170:15–24PubMed
30.
go back to reference Bearse MA Jr, Adams AJ, Han Y et al (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25:425–448PubMedPubMedCentral Bearse MA Jr, Adams AJ, Han Y et al (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25:425–448PubMedPubMedCentral
31.
go back to reference Tavares Ferreira J, Proenca R, Alves M et al (2017) Retina and choroid of diabetic patients without observed retinal vascular changes: a longitudinal study. Am J Ophthalmol 176:15–25PubMed Tavares Ferreira J, Proenca R, Alves M et al (2017) Retina and choroid of diabetic patients without observed retinal vascular changes: a longitudinal study. Am J Ophthalmol 176:15–25PubMed
32.
go back to reference Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA 113:2655–2664 Sohn EH, van Dijk HW, Jiao C et al (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA 113:2655–2664
33.
go back to reference Montesano G, Gervasoni A, Ferri P et al (2017) Structure-function relationship in early diabetic retinopathy: a spatial correlation analysis with OCT and microperimetry. Eye (Lond) 31:931–939 Montesano G, Gervasoni A, Ferri P et al (2017) Structure-function relationship in early diabetic retinopathy: a spatial correlation analysis with OCT and microperimetry. Eye (Lond) 31:931–939
34.
go back to reference Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013:905058PubMedPubMedCentral Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013:905058PubMedPubMedCentral
35.
go back to reference de Carlo TE, Bonini Filho MA, Adhi M, Duker JS (2015) Retinal and choroidal vasculature in birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography angiography. Retina 35:2392–2399PubMed de Carlo TE, Bonini Filho MA, Adhi M, Duker JS (2015) Retinal and choroidal vasculature in birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography angiography. Retina 35:2392–2399PubMed
36.
go back to reference Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254:1051–1058 Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254:1051–1058
37.
go back to reference Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383PubMed Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383PubMed
38.
go back to reference Bhanushali D, Anegondi N, Gadde SG et al (2016) Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:519–525 Bhanushali D, Anegondi N, Gadde SG et al (2016) Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:519–525
39.
go back to reference Simonett JM, Scarinci F, Picconi F et al (2017) Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95:751–755 Simonett JM, Scarinci F, Picconi F et al (2017) Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95:751–755
40.
go back to reference Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:362–370 Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:362–370
41.
go back to reference Fu X, Gens JS, Glazier JA, Burns SA, Gast TJ (2016) Progression of diabetic capillary occlusion: a model. PLoS Comput Biol 12:e1004932PubMedPubMedCentral Fu X, Gens JS, Glazier JA, Burns SA, Gast TJ (2016) Progression of diabetic capillary occlusion: a model. PLoS Comput Biol 12:e1004932PubMedPubMedCentral
43.
go back to reference Vujosevic S, Muraca A, Alkabes M et al (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. Retina 39:435–445 Vujosevic S, Muraca A, Alkabes M et al (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. Retina 39:435–445
44.
go back to reference Vujosevic S, Muraca A, Gatti V et al (2018) Peripapillary microvascular and neural changes in diabetes mellitus: an OCT-angiography study. Invest Ophthalmol Vis Sci 59:5074–5081PubMed Vujosevic S, Muraca A, Gatti V et al (2018) Peripapillary microvascular and neural changes in diabetes mellitus: an OCT-angiography study. Invest Ophthalmol Vis Sci 59:5074–5081PubMed
45.
go back to reference Rosen RB, Romo Andrade, Krawitz BD et al (2019) Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am J Ophthalmol 203:103–115PubMed Rosen RB, Romo Andrade, Krawitz BD et al (2019) Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am J Ophthalmol 203:103–115PubMed
Metadata
Title
Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: longitudinal study using OCT angiography
Authors
Kiyoung Kim
Eung Suk Kim
Do Gyun Kim
Seung-Young Yu
Publication date
01-12-2019
Publisher
Springer Milan
Published in
Acta Diabetologica / Issue 12/2019
Print ISSN: 0940-5429
Electronic ISSN: 1432-5233
DOI
https://doi.org/10.1007/s00592-019-01395-6

Other articles of this Issue 12/2019

Acta Diabetologica 12/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine