Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 7/2019

Open Access 01-07-2019 | Aneurysm | Laboratory Investigation

The pCONUS HPC: 30-Day and 180-Day In Vivo Biocompatibility Results

Authors: Pervinder Bhogal, Tim Lenz-Habijan, Catrin Bannewitz, Ralf Hannes, Hermann Monstadt, Andreas Simgen, Ruben Mühl-Benninghaus, Wolfgang Reith, Hans Henkes

Published in: CardioVascular and Interventional Radiology | Issue 7/2019

Login to get access

Abstract

Background

Endovascular stents are commonly used during neurointerventional procedures; however, the concomitant use of dual anti-platelet treatment (DAPT) can limit their use. There is a need to develop stent coatings that mitigate requirement for DAPT.

Methods

The hydrophilic polymer coating is a novel glycan-based multilayer polymer that inhibits platelet adhesion. After Institutional Animal Care and Use Committee approval, 18 New Zealand white rabbits (mean weight 4.02 ± 0.51 kg) were commenced on DAPT (ASA 10 mg/kg/day and clopidogrel 10 mg/kg/day). A bare nitinol pCONUS and coated pCONUS HPC were implanted into the common carotid arteries of each rabbit. Histological examinations were performed at 30 days (n = 9) and 180 days (n = 8) to assess the acute and chronic inflammatory reactions to the pCONUS HPC. Wilcoxon/Kruskal–Wallis and ANOVA were used with p value < 0.05 considered as significant.

Results

There is no statistically significant difference in inflammation within the intima/media or adventitia at 30 days (p = 0.3901 and p = 1, respectively) or at 180 days (p = 0.144 and p = 1, respectively) between pCONUS and pCONUS HPC cohorts. There is no significant difference in the presence of granulomas or giant cells between the cohorts at either 30 days (p = 1 and p = 0.8363) or 180 days (p = 1.00 and p = 0.149). At 30 days and 180 days, there was near-complete endothelialisation of the stent struts and no significant difference between the pCONUS or pCONUS HPC (p = 0.7832 and p = 0.334, respectively).

Conclusion

pCONUS HPC stents do not elicit an acute or chronic inflammatory response in vivo with no significant difference in the tissue response to bare nitinol pCONUS stents or pCONUS HPC stents.
Literature
1.
go back to reference Pierot L, Cognard C, Spelle L, Moret J. Safety and efficacy of balloon remodeling technique during endovascular treatment of intracranial aneurysms: critical review of the literature. AJNR Am J Neuroradiol. 2012;33:12–5.CrossRefPubMed Pierot L, Cognard C, Spelle L, Moret J. Safety and efficacy of balloon remodeling technique during endovascular treatment of intracranial aneurysms: critical review of the literature. AJNR Am J Neuroradiol. 2012;33:12–5.CrossRefPubMed
2.
go back to reference Vendrell J-F, Costalat V, Brunel H, Riquelme C, Bonafe A. Stent-assisted coiling of complex middle cerebral artery aneurysms: initial and midterm results. AJNR Am J Neuroradiol. 2011;32:259–63.CrossRefPubMed Vendrell J-F, Costalat V, Brunel H, Riquelme C, Bonafe A. Stent-assisted coiling of complex middle cerebral artery aneurysms: initial and midterm results. AJNR Am J Neuroradiol. 2011;32:259–63.CrossRefPubMed
3.
go back to reference Aletich VA, Debrun GM, Misra M, Charbel F, Ausman JI. The remodeling technique of balloon-assisted Guglielmi detachable coil placement in wide-necked aneurysms: experience at the University of Illinois at Chicago. J Neurosurg. 2000;93:388–96.CrossRef Aletich VA, Debrun GM, Misra M, Charbel F, Ausman JI. The remodeling technique of balloon-assisted Guglielmi detachable coil placement in wide-necked aneurysms: experience at the University of Illinois at Chicago. J Neurosurg. 2000;93:388–96.CrossRef
4.
go back to reference Biondi A, Janardhan V, Katz JM, Salvaggio K, Riina HA, Gobin YP. Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up. Neurosurgery. 2007;61:460–8 (discussion 468–469).CrossRef Biondi A, Janardhan V, Katz JM, Salvaggio K, Riina HA, Gobin YP. Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up. Neurosurgery. 2007;61:460–8 (discussion 468–469).CrossRef
5.
go back to reference Baldi S, Mounayer C, Piotin M, Spelle L, Moret J. Balloon-assisted coil placement in wide-neck bifurcation aneurysms by use of a new, compliant balloon microcatheter. AJNR Am J Neuroradiol. 2003;24:1222–5.PubMed Baldi S, Mounayer C, Piotin M, Spelle L, Moret J. Balloon-assisted coil placement in wide-neck bifurcation aneurysms by use of a new, compliant balloon microcatheter. AJNR Am J Neuroradiol. 2003;24:1222–5.PubMed
6.
go back to reference Piotin M, Blanc R, Spelle L, Mounayer C, Piantino R, Schmidt PJ, et al. Stent-assisted coiling of intracranial aneurysms: clinical and angiographic results in 216 consecutive aneurysms. Stroke J Cereb Circ. 2010;41:110–5.CrossRef Piotin M, Blanc R, Spelle L, Mounayer C, Piantino R, Schmidt PJ, et al. Stent-assisted coiling of intracranial aneurysms: clinical and angiographic results in 216 consecutive aneurysms. Stroke J Cereb Circ. 2010;41:110–5.CrossRef
7.
go back to reference Horowitz M, Levy E, Sauvageau E, Genevro J, Guterman LR, Hanel R, et al. Intra/extra-aneurysmal stent placement for management of complex and wide-necked- bifurcation aneurysms: eight cases using the waffle cone technique. Neurosurgery. 2006;58:ONS-258–62 (discussion ONS-262). Horowitz M, Levy E, Sauvageau E, Genevro J, Guterman LR, Hanel R, et al. Intra/extra-aneurysmal stent placement for management of complex and wide-necked- bifurcation aneurysms: eight cases using the waffle cone technique. Neurosurgery. 2006;58:ONS-258–62 (discussion ONS-262).
8.
go back to reference Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355:928–39.CrossRef Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355:928–39.CrossRef
9.
go back to reference Debrun GM, Aletich VA, Kehrli P, Misra M, Ausman JI, Charbel F, et al. Aneurysm geometry: an important criterion in selecting patients for Guglielmi detachable coiling. Neurol Med Chir (Tokyo). 1998;38(Suppl):1–20.CrossRef Debrun GM, Aletich VA, Kehrli P, Misra M, Ausman JI, Charbel F, et al. Aneurysm geometry: an important criterion in selecting patients for Guglielmi detachable coiling. Neurol Med Chir (Tokyo). 1998;38(Suppl):1–20.CrossRef
10.
go back to reference Brinjikji W, Cloft HJ, Kallmes DF. Difficult aneurysms for endovascular treatment: Overwide or undertall? Am J Neuroradiol. 2009;30:1513–7.CrossRefPubMed Brinjikji W, Cloft HJ, Kallmes DF. Difficult aneurysms for endovascular treatment: Overwide or undertall? Am J Neuroradiol. 2009;30:1513–7.CrossRefPubMed
11.
go back to reference Lylyk P, Chudyk J, Bleise C, Sahl H, Pérez MA, Henkes H, et al. The pCONus2 neck-bridging device: early clinical experience and immediate angiographic results. World Neurosurg. 2018;110:e766–75.CrossRefPubMed Lylyk P, Chudyk J, Bleise C, Sahl H, Pérez MA, Henkes H, et al. The pCONus2 neck-bridging device: early clinical experience and immediate angiographic results. World Neurosurg. 2018;110:e766–75.CrossRefPubMed
13.
go back to reference Spiotta AM, Derdeyn CP, Tateshima S, Mocco J, Crowley RW, Liu KC, et al. Results of the ANSWER trial using the pulserider for the treatment of broad-necked, bifurcation aneurysms. Neurosurgery. 2017;81:56–65.CrossRef Spiotta AM, Derdeyn CP, Tateshima S, Mocco J, Crowley RW, Liu KC, et al. Results of the ANSWER trial using the pulserider for the treatment of broad-necked, bifurcation aneurysms. Neurosurgery. 2017;81:56–65.CrossRef
15.
go back to reference dos Santos Souza MP, Agid R, Willinsky RA, Cusimano M, Montanera W, Wallace MC, et al. Microstent-assisted coiling for wide-necked intracranial aneurysms. Can J Neurol Sci J Can Sci Neurol. 2005;32:71–81.CrossRef dos Santos Souza MP, Agid R, Willinsky RA, Cusimano M, Montanera W, Wallace MC, et al. Microstent-assisted coiling for wide-necked intracranial aneurysms. Can J Neurol Sci J Can Sci Neurol. 2005;32:71–81.CrossRef
16.
go back to reference Katsaridis V, Papagiannaki C, Violaris C. Embolization of acutely ruptured and unruptured wide-necked cerebral aneurysms using the neuroform2 stent without pretreatment with antiplatelets: a single center experience. AJNR Am J Neuroradiol. 2006;27:1123–8.PubMed Katsaridis V, Papagiannaki C, Violaris C. Embolization of acutely ruptured and unruptured wide-necked cerebral aneurysms using the neuroform2 stent without pretreatment with antiplatelets: a single center experience. AJNR Am J Neuroradiol. 2006;27:1123–8.PubMed
17.
go back to reference Mocco J, Snyder KV, Albuquerque FC, Bendok BR, Alan SB, Carpenter JS, et al. Treatment of intracranial aneurysms with the Enterprise stent: a multicenter registry. J Neurosurg. 2009;110:35–9.CrossRef Mocco J, Snyder KV, Albuquerque FC, Bendok BR, Alan SB, Carpenter JS, et al. Treatment of intracranial aneurysms with the Enterprise stent: a multicenter registry. J Neurosurg. 2009;110:35–9.CrossRef
18.
go back to reference Biondi A, Janardhan V, Katz JM, Salvaggio K, Riina HA, Gobin YP. Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up. Neurosurgery. 2007;61:460–8 (discussion 468–469).CrossRef Biondi A, Janardhan V, Katz JM, Salvaggio K, Riina HA, Gobin YP. Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up. Neurosurgery. 2007;61:460–8 (discussion 468–469).CrossRef
19.
go back to reference Sani S, Jobe KW, Lopes DK. Treatment of wide-necked cerebral aneurysms with the Neuroform2 Treo stent. A prospective 6-month study. Neurosurg Focus. 2005;18:E4.CrossRefPubMed Sani S, Jobe KW, Lopes DK. Treatment of wide-necked cerebral aneurysms with the Neuroform2 Treo stent. A prospective 6-month study. Neurosurg Focus. 2005;18:E4.CrossRefPubMed
20.
go back to reference Alfke K, Straube T, Dörner L, Mehdorn HM, Jansen O. Treatment of intracranial broad-neck aneurysms with a new self-expanding stent and coil embolization. AJNR Am J Neuroradiol. 2004;25:584–91.PubMed Alfke K, Straube T, Dörner L, Mehdorn HM, Jansen O. Treatment of intracranial broad-neck aneurysms with a new self-expanding stent and coil embolization. AJNR Am J Neuroradiol. 2004;25:584–91.PubMed
21.
go back to reference Bodily KD, Cloft HJ, Lanzino G, Fiorella DJ, White PM, Kallmes DF. Stent-assisted coiling in acutely ruptured intracranial aneurysms: a qualitative, systematic review of the literature. AJNR Am J Neuroradiol. 2011;32:1232–6.CrossRefPubMed Bodily KD, Cloft HJ, Lanzino G, Fiorella DJ, White PM, Kallmes DF. Stent-assisted coiling in acutely ruptured intracranial aneurysms: a qualitative, systematic review of the literature. AJNR Am J Neuroradiol. 2011;32:1232–6.CrossRefPubMed
22.
go back to reference Kung DK, Policeni BA, Capuano AW, Rossen JD, Jabbour PM, Torner JC, et al. Risk of ventriculostomy-related hemorrhage in patients with acutely ruptured aneurysms treated using stent-assisted coiling. J Neurosurg. 2011;114:1021–7.CrossRefPubMed Kung DK, Policeni BA, Capuano AW, Rossen JD, Jabbour PM, Torner JC, et al. Risk of ventriculostomy-related hemorrhage in patients with acutely ruptured aneurysms treated using stent-assisted coiling. J Neurosurg. 2011;114:1021–7.CrossRefPubMed
23.
go back to reference Pérez MA, Bhogal P, Moreno RM, Wendl C, Bäzner H, Ganslandt O, et al. Use of the pCONus as an adjunct to coil embolization of acutely ruptured aneurysms. J Neurointerventional Surg. 2017;9:39–44.CrossRef Pérez MA, Bhogal P, Moreno RM, Wendl C, Bäzner H, Ganslandt O, et al. Use of the pCONus as an adjunct to coil embolization of acutely ruptured aneurysms. J Neurointerventional Surg. 2017;9:39–44.CrossRef
24.
go back to reference Orlov K, Kislitsin D, Strelnikov N, Berestov V, Gorbatykh A, Shayakhmetov T, et al. Experience using pipeline embolization device with Shield Technology in a patient lacking a full postoperative dual antiplatelet therapy regimen. Interv Neuroradiol J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci. 2018;24:270–3. Orlov K, Kislitsin D, Strelnikov N, Berestov V, Gorbatykh A, Shayakhmetov T, et al. Experience using pipeline embolization device with Shield Technology in a patient lacking a full postoperative dual antiplatelet therapy regimen. Interv Neuroradiol J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci. 2018;24:270–3.
26.
go back to reference Lenz-Habijan T, Bhogal P, Peters M, Bufe A, Martinez Moreno R, Bannewitz C, et al. Hydrophilic stent coating inhibits platelet adhesion on stent surfaces: initial results in vitro. Cardiovasc Intervent Radiol. 2018;41(11):1779–85.CrossRefPubMedPubMedCentral Lenz-Habijan T, Bhogal P, Peters M, Bufe A, Martinez Moreno R, Bannewitz C, et al. Hydrophilic stent coating inhibits platelet adhesion on stent surfaces: initial results in vitro. Cardiovasc Intervent Radiol. 2018;41(11):1779–85.CrossRefPubMedPubMedCentral
27.
go back to reference Fahed R, Raymond J, Ducroux C, Gentric J-C, Salazkin I, Ziegler D, et al. Testing flow diversion in animal models: a systematic review. Neuroradiology. 2016;58:375–82.CrossRefPubMed Fahed R, Raymond J, Ducroux C, Gentric J-C, Salazkin I, Ziegler D, et al. Testing flow diversion in animal models: a systematic review. Neuroradiology. 2016;58:375–82.CrossRefPubMed
28.
go back to reference Martínez Moreno R, Bhogal P, Lenz-Habijan T, Bannewitz C, Siddiqui A, Lylyk P, et al. In vivo canine study of three different coatings applied to p64 flow-diverter stents: initial biocompatibility study. Eur Radiol Exp. 2019;3:3.CrossRefPubMedPubMedCentral Martínez Moreno R, Bhogal P, Lenz-Habijan T, Bannewitz C, Siddiqui A, Lylyk P, et al. In vivo canine study of three different coatings applied to p64 flow-diverter stents: initial biocompatibility study. Eur Radiol Exp. 2019;3:3.CrossRefPubMedPubMedCentral
Metadata
Title
The pCONUS HPC: 30-Day and 180-Day In Vivo Biocompatibility Results
Authors
Pervinder Bhogal
Tim Lenz-Habijan
Catrin Bannewitz
Ralf Hannes
Hermann Monstadt
Andreas Simgen
Ruben Mühl-Benninghaus
Wolfgang Reith
Hans Henkes
Publication date
01-07-2019
Publisher
Springer US
Keywords
Aneurysm
Aneurysm
Published in
CardioVascular and Interventional Radiology / Issue 7/2019
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-019-02202-z

Other articles of this Issue 7/2019

CardioVascular and Interventional Radiology 7/2019 Go to the issue