Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Anemia | Research article

First-year growth of 834 preterm infants in a Chinese population: a single-center study

Authors: Ying Deng, Fan Yang, Dezhi Mu

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

The aim of this study was to follow the growth and hematological indicators of preterm infants during their first year.

Methods

Neonates below 37 gestational weeks had routine follow-ups up through 1 year from January 2012 to December 2015 at West China 2nd University Hospital, Sichuan University. Weight, length and head circumference (HC) were measured monthly during the first 6 months, followed by monitoring every second month until 12 months. The catch-up growth defined as a gain of Z-score > 0.67 according to previous study. All preterm infants were prescribed iron prophylaxis based on national guideline. The hemoglobin concentration was examined at 6 and 12 months.

Results

Altogether, 132 very-low-birth-weight (VLBW), 504 low-birth-weight (LBW) and 198 normal-birth-weight (NBW) infants were followed. The rates of catch-up growth for weight, length and HC 12 months of corrected age (CA) were 22.6, 29.1 and 14.6%, respectively. SGA and VLBW infants showed higher catch-up growth rates. The overall prevalence of anemia was 6.8% at 6 months and 7.8% at 12 months. The Z-scores for weight-for-length, length and HC were lower in the VLBW and SGA preterm infant groups than in the other preterm groups throughout the first year of life. The incidences of stunting, microcephaly and wasting changed from 5, 1.3 and 3.7% to 2, 1.1, 0.9 and 2.4%, respectively, during the first year. However, the incidences of wasting and stunting were higher for the VLBW infants than for the LBW and NBW infants at 12 months (9.3% vs. 1.4%, p < 0.01; 9.3% vs. 1%, p < 0.01,respectively; 4.7% vs. 0.8%, p < 0.01, 4.7% vs. 0%, p < 0.01,respectively). Similar results were observed between SGA and AGA infants (8.7% vs. 1.5%, p < 0.01; 5.8% vs. 0.4%, p < 0.01). Logistic regression revealed SGA and VLBW as risk factors for poor growth (WLZ < -2SD) at 12 months (OR = 5.5, 95% CI: 2.1–14.8, p < 0.01: OR = 4.8, 95% CI: 1.8–12.8, p < 0.01, respectively).

Conclusion

The VLBW and SGA preterm infants showed significant catch-up growth during their first year of life. However, SGA and VLBW were risk factors for poor growth during the preterm infants’ first year of life. Prophylactic iron supplementation in preterm infants appears to reduce the prevalence of anemia.
Literature
1.
go back to reference H B, S C, MZ O, D C, AB M, R N, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012;379:2162–2172. H B, S C, MZ O, D C, AB M, R N, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012;379:2162–2172.
2.
go back to reference Ehrenkranz RA. Nutrition. Growth and Clinical Outcomes World Review of Nutrition & Dietetics. 2014;110:11.CrossRef Ehrenkranz RA. Nutrition. Growth and Clinical Outcomes World Review of Nutrition & Dietetics. 2014;110:11.CrossRef
3.
go back to reference Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. 2012;379:445–52.CrossRef Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. 2012;379:445–52.CrossRef
4.
go back to reference Zhao Z, Ding M, Hu Z, Dai Q, Satija A, Zhou A, et al. Trajectories of length, weight, and bone mineral density among preterm infants during the first 12 months of corrected age in China. BMC Pediatr. 2015;15:91.CrossRef Zhao Z, Ding M, Hu Z, Dai Q, Satija A, Zhou A, et al. Trajectories of length, weight, and bone mineral density among preterm infants during the first 12 months of corrected age in China. BMC Pediatr. 2015;15:91.CrossRef
5.
go back to reference Westerberg AC, Christine H, Asta E, Veierød MB, Britt N, Aurvåg AK, et al. First year growth among very low birth weight infants. Acta Paediatr. 2010;99:556–62.CrossRef Westerberg AC, Christine H, Asta E, Veierød MB, Britt N, Aurvåg AK, et al. First year growth among very low birth weight infants. Acta Paediatr. 2010;99:556–62.CrossRef
6.
go back to reference Isaacs EB, Morley R, Lucas A. Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J Pediatr. 2009;155:229–34.CrossRef Isaacs EB, Morley R, Lucas A. Early diet and general cognitive outcome at adolescence in children born at or below 30 weeks gestation. J Pediatr. 2009;155:229–34.CrossRef
7.
go back to reference Dotinga BM, Eshuis MS, Boccatjeertes IF, Kerstjens JM, Van Braeckel KN, Reijneveld SA, et al. Longitudinal Growth and Neuropsychological Functioning at Age 7 in Moderate and Late Preterms. Pediatrics 2016;138:e20153638-e.CrossRef Dotinga BM, Eshuis MS, Boccatjeertes IF, Kerstjens JM, Van Braeckel KN, Reijneveld SA, et al. Longitudinal Growth and Neuropsychological Functioning at Age 7 in Moderate and Late Preterms. Pediatrics 2016;138:e20153638-e.CrossRef
8.
go back to reference Brandt I, Sticker EJ, Lentze MJ. Catch-up growth of head circumference of very low birth weight, small for gestational age preterm infants and mental development to adulthood. J Pediatr. 2003;142:463–70.CrossRef Brandt I, Sticker EJ, Lentze MJ. Catch-up growth of head circumference of very low birth weight, small for gestational age preterm infants and mental development to adulthood. J Pediatr. 2003;142:463–70.CrossRef
9.
go back to reference Organization WH. Worldwide prevalence of anaemia 1993-2005. World Health Organization 2008. Organization WH. Worldwide prevalence of anaemia 1993-2005. World Health Organization 2008.
10.
go back to reference Organization WH. THE GLOBAL PREVALENCE OF ANAEMIA IN 2011. Geneva Switzerland Who 2015;126:5409–5418. Organization WH. THE GLOBAL PREVALENCE OF ANAEMIA IN 2011. Geneva Switzerland Who 2015;126:5409–5418.
11.
go back to reference Jin HX, Wang RS, Chen SJ, Wang AP, Liu XY. Early and late Iron supplementation for low birth weight infants: a meta-analysis. Ital J Pediatr. 2015;41:1–10.CrossRef Jin HX, Wang RS, Chen SJ, Wang AP, Liu XY. Early and late Iron supplementation for low birth weight infants: a meta-analysis. Ital J Pediatr. 2015;41:1–10.CrossRef
12.
go back to reference Ferri C, Procianoy RS, Silveira RC. Prevalence and risk factors for iron-deficiency anemia in very-low-birth-weight preterm infants at 1 year of corrected age. J Trop Pediatr. 2014;60:53–60.CrossRef Ferri C, Procianoy RS, Silveira RC. Prevalence and risk factors for iron-deficiency anemia in very-low-birth-weight preterm infants at 1 year of corrected age. J Trop Pediatr. 2014;60:53–60.CrossRef
13.
go back to reference the academy of Chin J Pedia. Recommends for iron deficiency and iron deficiency anemia in children. Chin J Pediar 2008;46:502–504. the academy of Chin J Pedia. Recommends for iron deficiency and iron deficiency anemia in children. Chin J Pediar 2008;46:502–504.
14.
go back to reference RD B, FR G. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age). Pediatrics 2010;126:1040.CrossRef RD B, FR G. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age). Pediatrics 2010;126:1040.CrossRef
15.
go back to reference Niranjan T. Nutritional care of preterm infants: scientific basis and practical guidelines. Acta Paediatr. 2016;143:531–2. Niranjan T. Nutritional care of preterm infants: scientific basis and practical guidelines. Acta Paediatr. 2016;143:531–2.
16.
go back to reference Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC pediatrics 2013;13:59-. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC pediatrics 2013;13:59-.
17.
go back to reference Mukhopadhyay K, Mahajan R, Louis D, Narang A. Longitudinal growth of very low birth weight neonates during first year of life and risk factors for malnutrition in a developing country. Acta paediatrica (Oslo, Norway : 1992) 2013;102:278–81.CrossRef Mukhopadhyay K, Mahajan R, Louis D, Narang A. Longitudinal growth of very low birth weight neonates during first year of life and risk factors for malnutrition in a developing country. Acta paediatrica (Oslo, Norway : 1992) 2013;102:278–81.CrossRef
18.
go back to reference Budree S, Stein DJ, Brittain K, Goddard E, Koen N, Barnett W, et al. Maternal and infant factors had a significant impact on birth weight and longitudinal growth in a south African birth cohort. Acta Paediatr. 2017;106.CrossRef Budree S, Stein DJ, Brittain K, Goddard E, Koen N, Barnett W, et al. Maternal and infant factors had a significant impact on birth weight and longitudinal growth in a south African birth cohort. Acta Paediatr. 2017;106.CrossRef
19.
go back to reference Sharma PK, Sankar MJ, Sapra S, Saxena R, Karthikeyan CV, Deorari A, et al. Growth and neurosensory outcomes of preterm very low birth weight infants at 18 months of corrected age. Indian J Pediatr. 2011;78:1485–90.CrossRef Sharma PK, Sankar MJ, Sapra S, Saxena R, Karthikeyan CV, Deorari A, et al. Growth and neurosensory outcomes of preterm very low birth weight infants at 18 months of corrected age. Indian J Pediatr. 2011;78:1485–90.CrossRef
20.
go back to reference Park JS, Han J, Shin JE, Lee SM, Eun HS, Park MS, et al. Postdischarge growth assessment in very low birth weight infants. Korean Journal of Pediatrics. 2017;60:64.CrossRef Park JS, Han J, Shin JE, Lee SM, Eun HS, Park MS, et al. Postdischarge growth assessment in very low birth weight infants. Korean Journal of Pediatrics. 2017;60:64.CrossRef
21.
go back to reference Knops NB, Sneeuw KC, Brand R, Hille ET, den Ouden AL, Wit JM, et al. Catch-up growth up to ten years of age in children born very preterm or with very low birth weight. BMC Pediatr. 2005;5:26.CrossRef Knops NB, Sneeuw KC, Brand R, Hille ET, den Ouden AL, Wit JM, et al. Catch-up growth up to ten years of age in children born very preterm or with very low birth weight. BMC Pediatr. 2005;5:26.CrossRef
22.
go back to reference Nagasaka M, Morioka I, Yokota T, Fujita K, Kurokawa D, Koda T, et al. Incidence of short stature at 3 years of age in late preterm infants: a population-based study. Arch Dis Child. 2015;100:250–4.CrossRef Nagasaka M, Morioka I, Yokota T, Fujita K, Kurokawa D, Koda T, et al. Incidence of short stature at 3 years of age in late preterm infants: a population-based study. Arch Dis Child. 2015;100:250–4.CrossRef
23.
go back to reference Zhao Z, Ding M, Hu Z, Dai Q, Satija A, Zhou A, et al. Trajectories of length, weight, and bone mineral density among preterm infants during the first 12 months of corrected age in China. BMC Pediatrics,15,1(2015-08-05) 2015;15:1–7. Zhao Z, Ding M, Hu Z, Dai Q, Satija A, Zhou A, et al. Trajectories of length, weight, and bone mineral density among preterm infants during the first 12 months of corrected age in China. BMC Pediatrics,15,1(2015-08-05) 2015;15:1–7.
24.
go back to reference Singhal A. Long-term adverse effects of early growth acceleration or catch-up growth. Annals of Nutrition & Metabolism. 2017;70. Singhal A. Long-term adverse effects of early growth acceleration or catch-up growth. Annals of Nutrition & Metabolism. 2017;70.
25.
go back to reference Cooke RW. Are there critical periods for brain growth in children born preterm? Arch Dis Child Fetal Neonatal Ed. 2006;91:F17–20.CrossRef Cooke RW. Are there critical periods for brain growth in children born preterm? Arch Dis Child Fetal Neonatal Ed. 2006;91:F17–20.CrossRef
26.
go back to reference Ong KK, Kennedy K, Forsyth S, Godfrey KM, Koletzko B, Latulippe ME, et al. Postnatal growth in preterm infants and later health outcomes: a systematic review. Acta Paediatr. 2015;104:974–86.CrossRef Ong KK, Kennedy K, Forsyth S, Godfrey KM, Koletzko B, Latulippe ME, et al. Postnatal growth in preterm infants and later health outcomes: a systematic review. Acta Paediatr. 2015;104:974–86.CrossRef
27.
go back to reference Kerkhof GF, Willemsen RH, Leunissen RW, Breukhoven PE, Hokken-Koelega AC. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. Journal of Clinical Endocrinology & Metabolism. 2012;97:4498–506.CrossRef Kerkhof GF, Willemsen RH, Leunissen RW, Breukhoven PE, Hokken-Koelega AC. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. Journal of Clinical Endocrinology & Metabolism. 2012;97:4498–506.CrossRef
28.
go back to reference Embleton ND, Korada M, Wood CL, Pearce MS, Swamy R, Cheetham TD. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch Dis Child. 2016;101:1026.CrossRef Embleton ND, Korada M, Wood CL, Pearce MS, Swamy R, Cheetham TD. Catch-up growth and metabolic outcomes in adolescents born preterm. Arch Dis Child. 2016;101:1026.CrossRef
29.
go back to reference Embleton ND, Skeath T. Catch-up growth and metabolic and cognitive outcomes in adolescents born preterm. Nestle Nutrition Institute workshop series. 2015;81:61–71.CrossRef Embleton ND, Skeath T. Catch-up growth and metabolic and cognitive outcomes in adolescents born preterm. Nestle Nutrition Institute workshop series. 2015;81:61–71.CrossRef
30.
go back to reference Jin HX, Wang RS, Chen SJ, Wang AP, Liu XY. Early and late Iron supplementation for low birth weight infants: a meta-analysis. Ital J Pediatr. 2015;41:16.CrossRef Jin HX, Wang RS, Chen SJ, Wang AP, Liu XY. Early and late Iron supplementation for low birth weight infants: a meta-analysis. Ital J Pediatr. 2015;41:16.CrossRef
31.
go back to reference Lundström U, Siimes MA, Dallman PR. At what age does iron supplementation become necessary in low-birth-weight infants? J Pediatr. 1977;91:878–83.CrossRef Lundström U, Siimes MA, Dallman PR. At what age does iron supplementation become necessary in low-birth-weight infants? J Pediatr. 1977;91:878–83.CrossRef
32.
go back to reference Sherry B, Bister D, Yip R. Continuation of decline in prevalence of anemia in low-income children: the Vermont experience. Archives of Pediatrics & Adolescent Medicine. 1997;151:928.CrossRef Sherry B, Bister D, Yip R. Continuation of decline in prevalence of anemia in low-income children: the Vermont experience. Archives of Pediatrics & Adolescent Medicine. 1997;151:928.CrossRef
33.
go back to reference C A, G B, VP C, M DC, D D, T D, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr 2010;50:85. C A, G B, VP C, M DC, D D, T D, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr 2010;50:85.
Metadata
Title
First-year growth of 834 preterm infants in a Chinese population: a single-center study
Authors
Ying Deng
Fan Yang
Dezhi Mu
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Anemia
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1752-8

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue