Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism

Authors: Zhi-Zhun Mo, Xiu-Fen Wang, Xie Zhang, Ji-Yan Su, Hai-Ming Chen, Yu-Hong Liu, Zhen-Biao Zhang, Jian-Hui Xie, Zi-Ren Su

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

The inhibitory effect of andrographolide sodium bisulphite (ASB) on jack bean urease (JBU) and Helicobacter pylori urease (HPU) was performed to elucidate the inhibitory potency, kinetics and mechanism of inhibition in 20 mM phosphate buffer, pH 7.0, 2 mM EDTA, 25 °C.

Methods

The ammonia formations, indicator of urease activity, were examined using modified spectrophotometric Berthelot (phenol-hypochlorite) method. The inhibitory effect of ASB was characterized with IC50 values. Lineweaver-Burk and Dixon plots for JBU inhibition of ASB was constructed from the kinetic data. SH-blocking reagents and competitive active site Ni2+ binding inhibitors were employed for mechanism study. Molecular docking technique was used to provide some information on binding conformations as well as confirm the inhibition mode.

Results

The IC50 of ASB against JBU and HPU was 3.28 ± 0.13 mM and 3.17 ± 0.34 mM, respectively. The inhibition proved to be competitive and concentration- dependent in a slow-binding progress. The rapid formation of initial ASB-JBU complex with an inhibition constant of K i  = 2.86 × 10−3 mM was followed by a slow isomerization into the final complex with an overall inhibition constant of K i * = 1.33 × 10−4 mM. The protective experiment proved that the urease active site is involved in the binding of ASB. Thiol reagents (L-cysteine and dithiothreithol) strongly protect the enzyme from the loss of enzymatic activity, while boric acid and fluoride show weaker protection, indicating that the active-site sulfhydryl group of JBU was potentially involved in the blocking process. Moreover, inhibition of ASB proved to be reversible since ASB-inactivated JBU could be reactivated by dithiothreitol application. Molecular docking assay suggested that ASB made contacts with the important sulfhydryl group Cys-592 residue and restricted the mobility of the active-site flap.

Conclusions

ASB was a competitive inhibitor targeting thiol groups of urease in a slow-binding manner both reversibly and concentration-dependently, serving as a promising urease inhibitor for the treatment of urease-related diseases.
Literature
1.
go back to reference Krajewska B. Ureases I. Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym. 2009;59(1–3):9–21.CrossRef Krajewska B. Ureases I. Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym. 2009;59(1–3):9–21.CrossRef
2.
go back to reference Dixon NE, Gazzola C, Watters JJ, Blakely RL, Zerner B. Inhibition of Jack Bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. An equivalent weight for urease. J Am Chem Soc. 1975;97(14):4130–1.CrossRefPubMed Dixon NE, Gazzola C, Watters JJ, Blakely RL, Zerner B. Inhibition of Jack Bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. An equivalent weight for urease. J Am Chem Soc. 1975;97(14):4130–1.CrossRefPubMed
3.
go back to reference Carter EL, Tronrud DE, Taber SR, Karplus PA, Hausinger RP. Iron-containing urease in a pathogenic bacterium. Proc Natl Acad Sci U S A. 2011;108(32):13095–9.CrossRefPubMedPubMedCentral Carter EL, Tronrud DE, Taber SR, Karplus PA, Hausinger RP. Iron-containing urease in a pathogenic bacterium. Proc Natl Acad Sci U S A. 2011;108(32):13095–9.CrossRefPubMedPubMedCentral
4.
go back to reference Sumner JB. The isolation and crystallization of the enzyme urease preliminary paper. J Biol Chem. 1926;69(2):435–41. Sumner JB. The isolation and crystallization of the enzyme urease preliminary paper. J Biol Chem. 1926;69(2):435–41.
5.
go back to reference Marshall BJ, Barrett LJ, Prakash C, McCallum RW, Guerrant RL. Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology. 1990;99(3):697–702.CrossRefPubMed Marshall BJ, Barrett LJ, Prakash C, McCallum RW, Guerrant RL. Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology. 1990;99(3):697–702.CrossRefPubMed
6.
go back to reference Dixon NE, Hinds JA, Fihelly AK, Gazzola C, Winzor DJ, Blakeley RL, et al. Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors. Can J Biochem. 1980;58(12):1323–34.CrossRefPubMed Dixon NE, Hinds JA, Fihelly AK, Gazzola C, Winzor DJ, Blakeley RL, et al. Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors. Can J Biochem. 1980;58(12):1323–34.CrossRefPubMed
7.
go back to reference Breitenbach JM, Hausinger RP. Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids. Biochem J. 1988;250(3):917–20.CrossRefPubMedPubMedCentral Breitenbach JM, Hausinger RP. Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids. Biochem J. 1988;250(3):917–20.CrossRefPubMedPubMedCentral
8.
go back to reference Krajewska B. Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. J Enzyme Inhib Med Chem. 2008;23(4):535–42.CrossRefPubMed Krajewska B. Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. J Enzyme Inhib Med Chem. 2008;23(4):535–42.CrossRefPubMed
9.
go back to reference Kot M, Zaborska W. Inhibition of jack bean urease by tetrachloro-o-benzoquinone and tetrachloro-p-benzoquinone. J Enzyme Inhib Med Chem. 2006;21(5):537–42.CrossRefPubMed Kot M, Zaborska W. Inhibition of jack bean urease by tetrachloro-o-benzoquinone and tetrachloro-p-benzoquinone. J Enzyme Inhib Med Chem. 2006;21(5):537–42.CrossRefPubMed
10.
go back to reference Kuhler TC, Fryklund J, Bergman NA, Weilitz J, Lee A, Larsson H. Structure-activity relationship of omeprazole and analogues as Helicobacter pylori urease inhibitors. J Med Chem. 1995;38(25):4906–16.CrossRefPubMed Kuhler TC, Fryklund J, Bergman NA, Weilitz J, Lee A, Larsson H. Structure-activity relationship of omeprazole and analogues as Helicobacter pylori urease inhibitors. J Med Chem. 1995;38(25):4906–16.CrossRefPubMed
11.
go back to reference Shao ZJ, Zheng XW, Feng T, Huang J, Chen J, Wu YY, et al. Andrographolide exerted its antimicrobial effects by upregulation of human beta-defensin-2 induced through p38 MAPK and NF-kappaB pathway in human lung epithelial cells. Can J Physiol Pharmacol. 2012;90(5):647–53.CrossRefPubMed Shao ZJ, Zheng XW, Feng T, Huang J, Chen J, Wu YY, et al. Andrographolide exerted its antimicrobial effects by upregulation of human beta-defensin-2 induced through p38 MAPK and NF-kappaB pathway in human lung epithelial cells. Can J Physiol Pharmacol. 2012;90(5):647–53.CrossRefPubMed
12.
go back to reference Chen HW, Lin AH, Chu HC, Li CC, Tsai CW, Chao CY, et al. Inhibition of TNF-alpha-induced inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway. J Nat Prod. 2011;74(11):2408–13.CrossRefPubMed Chen HW, Lin AH, Chu HC, Li CC, Tsai CW, Chao CY, et al. Inhibition of TNF-alpha-induced inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway. J Nat Prod. 2011;74(11):2408–13.CrossRefPubMed
13.
go back to reference Chiou WF, Lin JJ, Chen CF. Andrographolide suppresses the expression of inducible nitric oxide synthase in macrophage and restores the vasoconstriction in rat aorta treated with lipopolysaccharide. Br J Pharmacol. 1998;125(2):327–34.CrossRefPubMedPubMedCentral Chiou WF, Lin JJ, Chen CF. Andrographolide suppresses the expression of inducible nitric oxide synthase in macrophage and restores the vasoconstriction in rat aorta treated with lipopolysaccharide. Br J Pharmacol. 1998;125(2):327–34.CrossRefPubMedPubMedCentral
14.
go back to reference Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol. 2003;3(3):147–58.CrossRefPubMed Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol. 2003;3(3):147–58.CrossRefPubMed
15.
go back to reference Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol. 2002;135(2):399–406.CrossRefPubMedPubMedCentral Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol. 2002;135(2):399–406.CrossRefPubMedPubMedCentral
16.
go back to reference Handa SS, Sharma A. Hepatoprotective activity of andrographolide against galactosamine & paracetamol intoxication in rats. Indian J Med Res. 1990;92:284–92.PubMed Handa SS, Sharma A. Hepatoprotective activity of andrographolide against galactosamine & paracetamol intoxication in rats. Indian J Med Res. 1990;92:284–92.PubMed
17.
go back to reference Trivedi NP, Rawal UM, Patel BP. Potency of andrographolide as an antitumor compound in BHC-induced liver damage. Integr Cancer Ther. 2009;8(2):177–89.CrossRefPubMed Trivedi NP, Rawal UM, Patel BP. Potency of andrographolide as an antitumor compound in BHC-induced liver damage. Integr Cancer Ther. 2009;8(2):177–89.CrossRefPubMed
18.
go back to reference Saranya P, Geetha A, Selvamathy SMKN. A biochemical study on the gastroprotective effect of andrographolide in rats induced with gastric ulcer. Indian J Pharm Sci. 2011;73(5):550–7.CrossRefPubMedPubMedCentral Saranya P, Geetha A, Selvamathy SMKN. A biochemical study on the gastroprotective effect of andrographolide in rats induced with gastric ulcer. Indian J Pharm Sci. 2011;73(5):550–7.CrossRefPubMedPubMedCentral
19.
go back to reference Chen ZL, Xu HP. 45 cases of application of Andrographis paniculata for treatment on Helicobacter pylori-associated children gastritis. Chin J Integr Tradit West Med. 2004;21:485. Chen ZL, Xu HP. 45 cases of application of Andrographis paniculata for treatment on Helicobacter pylori-associated children gastritis. Chin J Integr Tradit West Med. 2004;21:485.
20.
go back to reference Wu GX, Zhang JB, Wang SP. Application of Andrographis paniculata for treatment of Helicobacter pylori-associated positive digestive ulcer. Chin J Clin Res. 2003;11(79):13122-3. Wu GX, Zhang JB, Wang SP. Application of Andrographis paniculata for treatment of Helicobacter pylori-associated positive digestive ulcer. Chin J Clin Res. 2003;11(79):13122-3.
21.
go back to reference Zhang XF, Tan BK. Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats. Acta Pharmacol Sin. 2000;21(12):1157–64.PubMed Zhang XF, Tan BK. Anti-diabetic property of ethanolic extract of Andrographis paniculata in streptozotocin-diabetic rats. Acta Pharmacol Sin. 2000;21(12):1157–64.PubMed
22.
go back to reference Zhang XF, Tan BK. Antihyperglycaemic and anti-oxidant properties of Andrographis paniculata in normal and diabetic rats. Clin Exp Pharmacol Physiol. 2000;27(5-6):358–63.CrossRefPubMed Zhang XF, Tan BK. Antihyperglycaemic and anti-oxidant properties of Andrographis paniculata in normal and diabetic rats. Clin Exp Pharmacol Physiol. 2000;27(5-6):358–63.CrossRefPubMed
23.
go back to reference Xu HW, Dai GF, Liu GZ, Wang JF, Liu HM. Synthesis of andrographolide derivatives: a new family of alpha-glucosidase inhibitors. Bioorg Med Chem. 2007;15(12):4247–55.CrossRefPubMed Xu HW, Dai GF, Liu GZ, Wang JF, Liu HM. Synthesis of andrographolide derivatives: a new family of alpha-glucosidase inhibitors. Bioorg Med Chem. 2007;15(12):4247–55.CrossRefPubMed
24.
go back to reference Follmer C, Pereira FV, Da Silveira NP, Carlini CR. Jack bean urease (EC 3.5.1.5) aggregation monitored by dynamic and static light scattering. Biophys Chem. 2004;111(1):79–87.CrossRefPubMed Follmer C, Pereira FV, Da Silveira NP, Carlini CR. Jack bean urease (EC 3.5.1.5) aggregation monitored by dynamic and static light scattering. Biophys Chem. 2004;111(1):79–87.CrossRefPubMed
25.
go back to reference Sheridan L, Wilmot CM, Cromie KD, van der Logt P, Phillips SE. Crystallization and preliminary X-ray structure determination of jack bean urease with a bound antibody fragment. Acta Crystallogr Sect D: Biol Crystallogr. 2002;58(Pt 2):374–6.CrossRef Sheridan L, Wilmot CM, Cromie KD, van der Logt P, Phillips SE. Crystallization and preliminary X-ray structure determination of jack bean urease with a bound antibody fragment. Acta Crystallogr Sect D: Biol Crystallogr. 2002;58(Pt 2):374–6.CrossRef
26.
go back to reference Follmer C. Insights into the role and structure of plant ureases. Phytochemistry. 2008;69(1):18–28.CrossRefPubMed Follmer C. Insights into the role and structure of plant ureases. Phytochemistry. 2008;69(1):18–28.CrossRefPubMed
27.
go back to reference Shabana S, Kawai A, Kai K, Akiyama K, Hayashi H. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Biosci Biotechnol Biochem. 2010;74(4):878–80.CrossRefPubMed Shabana S, Kawai A, Kai K, Akiyama K, Hayashi H. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava. Biosci Biotechnol Biochem. 2010;74(4):878–80.CrossRefPubMed
28.
go back to reference Norris R, Brocklehurst K. A convenient method of preparation of high-activity urease from Canavalia ensiformis by covalent chromatography and an investigation of its thiol groups with 2,2′-dipyridyl disulphide as a thiol titrant and reactivity probe. Biochem J. 1976;159(2):245–57.CrossRefPubMedPubMedCentral Norris R, Brocklehurst K. A convenient method of preparation of high-activity urease from Canavalia ensiformis by covalent chromatography and an investigation of its thiol groups with 2,2′-dipyridyl disulphide as a thiol titrant and reactivity probe. Biochem J. 1976;159(2):245–57.CrossRefPubMedPubMedCentral
29.
go back to reference Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S. Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coord Chem Rev. 1999;190–192:331–55.CrossRef Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S. Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coord Chem Rev. 1999;190–192:331–55.CrossRef
30.
go back to reference Shibata H, Iimuro M, Uchiya N, Kawamori T, Nagaoka M, Ueyama S, et al. Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter. 2003;8(1):59–65.CrossRefPubMed Shibata H, Iimuro M, Uchiya N, Kawamori T, Nagaoka M, Ueyama S, et al. Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter. 2003;8(1):59–65.CrossRefPubMed
31.
go back to reference Ohta T, Shibata H, Kawamori T, Iimuro M, Sugimura T, Wakabayashi K. Marked reduction of Helicobacter pylori-induced gastritis by urease inhibitors, acetohydroxamic acid and flurofamide, in Mongolian gerbils. Biochem Biophys Res Commun. 2001;285(3):728–33.CrossRefPubMed Ohta T, Shibata H, Kawamori T, Iimuro M, Sugimura T, Wakabayashi K. Marked reduction of Helicobacter pylori-induced gastritis by urease inhibitors, acetohydroxamic acid and flurofamide, in Mongolian gerbils. Biochem Biophys Res Commun. 2001;285(3):728–33.CrossRefPubMed
32.
go back to reference Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39(8):971–4.CrossRef Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39(8):971–4.CrossRef
34.
go back to reference Krajewska B, Zaborska W, Leszko M. Inhibition of chitosan-immobilized urease by slow-binding inhibitors: Ni2+, F− and acetohydroxamic acid. J Mol Catal B Enzym. 2001;14(4–6):101–9.CrossRef Krajewska B, Zaborska W, Leszko M. Inhibition of chitosan-immobilized urease by slow-binding inhibitors: Ni2+, F− and acetohydroxamic acid. J Mol Catal B Enzym. 2001;14(4–6):101–9.CrossRef
35.
go back to reference Dixon NE, Blakeley RL, Zerner B. Jack bean urease (EC 3.5.1.5). III. The involvement of active-site nickel ion in inhibition by beta-mercaptoethanol, phosphoramidate, and fluoride. Can J Biochem. 1980;58(6):481–8.CrossRefPubMed Dixon NE, Blakeley RL, Zerner B. Jack bean urease (EC 3.5.1.5). III. The involvement of active-site nickel ion in inhibition by beta-mercaptoethanol, phosphoramidate, and fluoride. Can J Biochem. 1980;58(6):481–8.CrossRefPubMed
36.
go back to reference Morrison JF, Walsh CT. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301.PubMed Morrison JF, Walsh CT. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301.PubMed
37.
38.
go back to reference Takishima K, Suga T, Mamiya G. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. Eur J Biochem / FEBS. 1988;175(1):151–65.CrossRef Takishima K, Suga T, Mamiya G. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. Eur J Biochem / FEBS. 1988;175(1):151–65.CrossRef
39.
go back to reference Todd MJ, Hausinger RP. Identification of the essential cysteine residue in Klebsiella aerogenes urease. J Biol Chem. 1991;266(36):24327–31.PubMed Todd MJ, Hausinger RP. Identification of the essential cysteine residue in Klebsiella aerogenes urease. J Biol Chem. 1991;266(36):24327–31.PubMed
40.
go back to reference Benini S, Ciurli S, Nolting HF, Mangani S. X-ray absorption spectroscopy study of native and phenylphosphorodiamidate-inhibited Bacillus pasteurii urease. Eur J Biochem / FEBS. 1996;239(1):61–6.CrossRef Benini S, Ciurli S, Nolting HF, Mangani S. X-ray absorption spectroscopy study of native and phenylphosphorodiamidate-inhibited Bacillus pasteurii urease. Eur J Biochem / FEBS. 1996;239(1):61–6.CrossRef
41.
go back to reference Krajewska B, Zaborska W. Jack bean urease: the effect of active-site binding inhibitors on the reactivity of enzyme thiol groups. Bioorg Chem. 2007;35(5):355–65.CrossRefPubMed Krajewska B, Zaborska W. Jack bean urease: the effect of active-site binding inhibitors on the reactivity of enzyme thiol groups. Bioorg Chem. 2007;35(5):355–65.CrossRefPubMed
Metadata
Title
Andrographolide sodium bisulphite-induced inactivation of urease: inhibitory potency, kinetics and mechanism
Authors
Zhi-Zhun Mo
Xiu-Fen Wang
Xie Zhang
Ji-Yan Su
Hai-Ming Chen
Yu-Hong Liu
Zhen-Biao Zhang
Jian-Hui Xie
Zi-Ren Su
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0775-4

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue