Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Research article

Analysis of hand-forearm anthropometric components in assessing handgrip and pinch strengths of school-aged children and adolescents: a partial least squares (PLS) approach

Authors: Sajjad Rostamzadeh, Mahnaz Saremi, Shahram Vosoughi, Bruce Bradtmiller, Leila Janani, Ali Asghar Farshad, Fereshteh Taheri

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

The purpose of this study was to examine the influence of hand-forearm anthropometric dimensions on handgrip and pinch strengths among 7–18 years children and adolescents and to investigate the extent to which these variables can be used to predict hand strength.

Methods

Four types of hand strengths including handgrip, tip to tip, key, and three-jaw chuck pinches were measured in 2637 healthy children and adolescents (1391 boys and 1246 girls) aged 7–18 years using standard adjustable Jamar hydraulic hand dynamometer and pinch gauge. A set of 17 hand-forearm anthropometric dimensions were also measured with an accurate digital caliper and tape measure.

Results

No significant differences were found between the hand strengths of boys and girls up to the age of 10 years. Gender related differences in handgrip and pinches were observed from the age of 11 years onwards, with boys always being stronger. The dominant hand was stronger than the non-dominant hand (8% for handgrip and by about 10% for all three types of pinches). The strongest correlations were found between the hand length and hand strengths (r > 0.83 for handgrip and three all pinches; p < 0.001, 2-tailed). Based on the partial least squares (PLS) analysis, 8 out of 17 anthropometric indices including hand length, hand circumference, thumb length, index finger length, middle finger length, and forearm length had considerable loadings in the PLS analysis, which together accounted for 46% of the total variance.

Conclusions

These results may be used by health professionals in clinical settings as well as by designers to create ergonomic hand tools.
Literature
1.
go back to reference Takken T, Elst E, Spermon N, Helders PJM, Prakken ABJ, Van der Net J. The physiological and physical determinants of functional ability measures in children with juvenile dermatomyositis. Rheumatology. 2003;42(4):591–5.PubMedCrossRef Takken T, Elst E, Spermon N, Helders PJM, Prakken ABJ, Van der Net J. The physiological and physical determinants of functional ability measures in children with juvenile dermatomyositis. Rheumatology. 2003;42(4):591–5.PubMedCrossRef
2.
go back to reference Tanaka C, Hikihara Y, Ohkawara K, Tanaka S. Locomotive and non-locomotive activity as determined by triaxial accelerometry and physical fitness in Japanese preschool children. Pediatr Exerc Sci. 2012;24(3):420–34.PubMedCrossRef Tanaka C, Hikihara Y, Ohkawara K, Tanaka S. Locomotive and non-locomotive activity as determined by triaxial accelerometry and physical fitness in Japanese preschool children. Pediatr Exerc Sci. 2012;24(3):420–34.PubMedCrossRef
3.
go back to reference Wind AE, Takken T, Helders PJM, Engelbert RHH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010;169(3):281–7.PubMedCrossRef Wind AE, Takken T, Helders PJM, Engelbert RHH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr. 2010;169(3):281–7.PubMedCrossRef
4.
go back to reference Windhager S, Schaefer K, Fink B. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. Am J Hum Biol. 2011;23(6):805–14.PubMedCrossRef Windhager S, Schaefer K, Fink B. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. Am J Hum Biol. 2011;23(6):805–14.PubMedCrossRef
5.
go back to reference Buchan DS, Boddy LM, Young JD, Cooper S-M, Noakes TD, Mahoney C, et al. Relationships between cardiorespiratory and muscular fitness with cardiometabolic risk in adolescents. Res Sport Med. 2015;23(3):227–39.CrossRef Buchan DS, Boddy LM, Young JD, Cooper S-M, Noakes TD, Mahoney C, et al. Relationships between cardiorespiratory and muscular fitness with cardiometabolic risk in adolescents. Res Sport Med. 2015;23(3):227–39.CrossRef
6.
go back to reference Morikawa SY, Fujihara K, Hatta M, Osawa T, Ishizawa M, Yamamoto M, et al. Relationships among cardiorespiratory fitness, muscular fitness, and cardiometabolic risk factors in Japanese adolescents: Niigata screening for and preventing the development of non-communicable disease study‐Agano (NICE EVIDENCE Study‐Agano) 2. Pediatr Diabetes. 2018;19(4):593–602.PubMedCrossRef Morikawa SY, Fujihara K, Hatta M, Osawa T, Ishizawa M, Yamamoto M, et al. Relationships among cardiorespiratory fitness, muscular fitness, and cardiometabolic risk factors in Japanese adolescents: Niigata screening for and preventing the development of non-communicable disease study‐Agano (NICE EVIDENCE Study‐Agano) 2. Pediatr Diabetes. 2018;19(4):593–602.PubMedCrossRef
7.
go back to reference Ortega FB, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. Bmj. 2012;345:e7279.PubMedPubMedCentralCrossRef Ortega FB, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. Bmj. 2012;345:e7279.PubMedPubMedCentralCrossRef
8.
go back to reference Blakeley CE, Van Rompay MI, Schultz NS, Sacheck JM. Relationship between muscle strength and dyslipidemia, serum 25 (OH) D, and weight status among diverse schoolchildren: a cross-sectional analysis. BMC Pediatr. 2018;18(1):23.PubMedPubMedCentralCrossRef Blakeley CE, Van Rompay MI, Schultz NS, Sacheck JM. Relationship between muscle strength and dyslipidemia, serum 25 (OH) D, and weight status among diverse schoolchildren: a cross-sectional analysis. BMC Pediatr. 2018;18(1):23.PubMedPubMedCentralCrossRef
10.
go back to reference Ficuciello F. Hand-arm autonomous grasping: Synergistic motions to enhance the learning process. Intell Serv Robot. 2019;12(1):17–25.CrossRef Ficuciello F. Hand-arm autonomous grasping: Synergistic motions to enhance the learning process. Intell Serv Robot. 2019;12(1):17–25.CrossRef
11.
go back to reference Musa TH, Li W, Xiaoshan L, Guo Y, Wenjuan Y, Xuan Y, et al. Association of normative values of grip strength with anthropometric variables among students, in Jiangsu Province. HOMO. 2018;69(1–2):70–6.PubMedCrossRef Musa TH, Li W, Xiaoshan L, Guo Y, Wenjuan Y, Xuan Y, et al. Association of normative values of grip strength with anthropometric variables among students, in Jiangsu Province. HOMO. 2018;69(1–2):70–6.PubMedCrossRef
12.
go back to reference Jürimäe T, Hurbo T, Jürimäe J. Relationship of handgrip strength with anthropometric and body composition variables in prepubertal children. HOMO-Journal Comp Hum Biol. 2009;60(3):225–38.CrossRef Jürimäe T, Hurbo T, Jürimäe J. Relationship of handgrip strength with anthropometric and body composition variables in prepubertal children. HOMO-Journal Comp Hum Biol. 2009;60(3):225–38.CrossRef
13.
go back to reference Peterson MD, Saltarelli WA, Visich PS, Gordon PM. Strength capacity and cardiometabolic risk clustering in adolescents. Pediatrics. 2014;133(4):896–903.CrossRef Peterson MD, Saltarelli WA, Visich PS, Gordon PM. Strength capacity and cardiometabolic risk clustering in adolescents. Pediatrics. 2014;133(4):896–903.CrossRef
14.
go back to reference Ekşioğlu M. Normative static grip strength of population of Turkey, effects of various factors and a comparison with international norms. Appl Ergon. 2016;52(1):8–17.PubMedCrossRef Ekşioğlu M. Normative static grip strength of population of Turkey, effects of various factors and a comparison with international norms. Appl Ergon. 2016;52(1):8–17.PubMedCrossRef
15.
go back to reference Ploegmakers JJW, Hepping AM, Geertzen JHB, Bulstra SK, Stevens M. Grip strength is strongly associated with height, weight and gender in childhood: a cross sectional study of 2241 children and adolescents providing reference values. J Physiother. 2013;59(4):255–61.PubMedCrossRef Ploegmakers JJW, Hepping AM, Geertzen JHB, Bulstra SK, Stevens M. Grip strength is strongly associated with height, weight and gender in childhood: a cross sectional study of 2241 children and adolescents providing reference values. J Physiother. 2013;59(4):255–61.PubMedCrossRef
16.
go back to reference Shahida MSN, Zawiah MDS, Case K. The relationship between anthropometry and hand grip strength among elderly Malaysians. Int J Ind Ergon. 2015;50:17–25.CrossRef Shahida MSN, Zawiah MDS, Case K. The relationship between anthropometry and hand grip strength among elderly Malaysians. Int J Ind Ergon. 2015;50:17–25.CrossRef
17.
go back to reference Chen C-Y, McGee CW, Rich TL, Prudente CN, Gillick BT. Reference values of intrinsic muscle strength of the hand of adolescents and young adults. J Hand Ther. 2018;31(3):348–56.PubMedCrossRef Chen C-Y, McGee CW, Rich TL, Prudente CN, Gillick BT. Reference values of intrinsic muscle strength of the hand of adolescents and young adults. J Hand Ther. 2018;31(3):348–56.PubMedCrossRef
18.
go back to reference Omar MTA, Alghadir AH, Zafar H, Al Baker S. Hand grip strength and dexterity function in children aged 6–12 years: A cross-sectional study. J Hand Ther. 2018;31(1):93–101.PubMedCrossRef Omar MTA, Alghadir AH, Zafar H, Al Baker S. Hand grip strength and dexterity function in children aged 6–12 years: A cross-sectional study. J Hand Ther. 2018;31(1):93–101.PubMedCrossRef
19.
go back to reference Björk M, Thyberg I, Haglund L, Skogh T. Hand function in women and men with early rheumatoid arthritis. A prospective study over three years (the Swedish TIRA project). Scand J Rheumatol. 2006;35(1):15–9.PubMedCrossRef Björk M, Thyberg I, Haglund L, Skogh T. Hand function in women and men with early rheumatoid arthritis. A prospective study over three years (the Swedish TIRA project). Scand J Rheumatol. 2006;35(1):15–9.PubMedCrossRef
20.
go back to reference Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;4(1):127.PubMedPubMedCentralCrossRef Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;4(1):127.PubMedPubMedCentralCrossRef
21.
go back to reference Cohen DD, Voss C, Taylor MJD, Stasinopoulos DM, Delextrat A, Sandercock GRH. Handgrip strength in English schoolchildren. Acta Paediatr. 2010;99(7):1065–72.PubMedCrossRef Cohen DD, Voss C, Taylor MJD, Stasinopoulos DM, Delextrat A, Sandercock GRH. Handgrip strength in English schoolchildren. Acta Paediatr. 2010;99(7):1065–72.PubMedCrossRef
22.
go back to reference Saremi M, Rostamzadeh S. Hand Dimensions and Grip Strength: A Comparison of Manual and Non-manual Workers. In: Congress of the International Ergonomics Association. Springer; 2018. p. 520–529. Saremi M, Rostamzadeh S. Hand Dimensions and Grip Strength: A Comparison of Manual and Non-manual Workers. In: Congress of the International Ergonomics Association. Springer; 2018. p. 520–529.
23.
go back to reference Rostamzadeh S, Saremi M, Tabatabaei S. Normative hand grip strength and prediction models for Iranian office employees. Work. 2019;62(2):233–41.PubMedCrossRef Rostamzadeh S, Saremi M, Tabatabaei S. Normative hand grip strength and prediction models for Iranian office employees. Work. 2019;62(2):233–41.PubMedCrossRef
24.
go back to reference Rostamzadeh S, Saremi M, Taheri F. Maximum handgrip strength as a function of type of work and hand-forearm dimensions. Work. 2020;65(3):679–87.PubMedCrossRef Rostamzadeh S, Saremi M, Taheri F. Maximum handgrip strength as a function of type of work and hand-forearm dimensions. Work. 2020;65(3):679–87.PubMedCrossRef
25.
go back to reference Venckunas T, Emeljanovas A, Mieziene B, Volbekiene V. Secular trends in physical fitness and body size in Lithuanian children and adolescents between 1992 and 2012. J Epidemiol Community Heal. 2017;71(2):181–7.CrossRef Venckunas T, Emeljanovas A, Mieziene B, Volbekiene V. Secular trends in physical fitness and body size in Lithuanian children and adolescents between 1992 and 2012. J Epidemiol Community Heal. 2017;71(2):181–7.CrossRef
26.
go back to reference Rostamzadeh S, Saremi M, Vahabzadeh-Monshi H, Yazdanparast P. Grip and Pinch Strengths in Young Adults Residing in Tehran (2017): Development of Prediction Models. Iran J Heal Saf Environ. 2020;6(4):1348–54. Rostamzadeh S, Saremi M, Vahabzadeh-Monshi H, Yazdanparast P. Grip and Pinch Strengths in Young Adults Residing in Tehran (2017): Development of Prediction Models. Iran J Heal Saf Environ. 2020;6(4):1348–54.
27.
go back to reference Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method. In: Matrix pencils. Springer; 1983. p. 286–293. Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method. In: Matrix pencils. Springer; 1983. p. 286–293.
28.
go back to reference Reinartz W, Haenlein M, Henseler J. An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int J Res Mark. 2009;26(4):332–244.CrossRef Reinartz W, Haenlein M, Henseler J. An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int J Res Mark. 2009;26(4):332–244.CrossRef
29.
go back to reference ISO 15535. 2012. General Requirements for Establishing Anthropometric Databases. In 2012. ISO 15535. 2012. General Requirements for Establishing Anthropometric Databases. In 2012.
30.
go back to reference Kalton G, Brick JM, Lê T. Chapter VI Estimating components of design effects for use in sample design. 2005. Kalton G, Brick JM, Lê T. Chapter VI Estimating components of design effects for use in sample design. 2005.
31.
go back to reference Chen CW, Wang JY, Lou YT, Yeh YS, Tsai HL, Huang CW. SUN-P087: The Prognostic Impact of Radiologic Assessment of Sacropenia and Osteopenia in Stage Iii Colon Cancer. Clin Nutr. 2017;36:86.CrossRef Chen CW, Wang JY, Lou YT, Yeh YS, Tsai HL, Huang CW. SUN-P087: The Prognostic Impact of Radiologic Assessment of Sacropenia and Osteopenia in Stage Iii Colon Cancer. Clin Nutr. 2017;36:86.CrossRef
32.
go back to reference Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;48(1):16–31.PubMedCentralCrossRef Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;48(1):16–31.PubMedCentralCrossRef
33.
go back to reference ISO 7250-1. 2017. Basic human body measurements for technological design -- Part 1: Body measurement definitions and landmarks. In 2017. ISO 7250-1. 2017. Basic human body measurements for technological design -- Part 1: Body measurement definitions and landmarks. In 2017.
34.
go back to reference Garrett JW. The adult human hand: some anthropometric and biomechanical considerations. Hum Factors. 1971;13(2):117–31.PubMedCrossRef Garrett JW. The adult human hand: some anthropometric and biomechanical considerations. Hum Factors. 1971;13(2):117–31.PubMedCrossRef
35.
go back to reference Fess EE, Moran C. American society of hand therapists: Clinical assessment recommendations. Garner Soc. 1981. p 6–8. Fess EE, Moran C. American society of hand therapists: Clinical assessment recommendations. Garner Soc. 1981. p 6–8.
36.
go back to reference van den Beld WA, van den Beld WA, van der Sanden GAC, Sengers RCA, Verbeek ALM, Gabreëls FJM. Validity and reproducibility of the Jamar dynamometer in children aged 4–11 years. Disabil Rehabil. 2006;28(21):1303–9.PubMedCrossRef van den Beld WA, van den Beld WA, van der Sanden GAC, Sengers RCA, Verbeek ALM, Gabreëls FJM. Validity and reproducibility of the Jamar dynamometer in children aged 4–11 years. Disabil Rehabil. 2006;28(21):1303–9.PubMedCrossRef
37.
go back to reference Hébert LJ, Maltais DB, Lepage C, Saulnier J, Crête M, Perron M. Isometric Muscle Strength in Youth Assessed by Hand-held Dynamometry: A Feasibility, Reliability, and Validity Study A Feasibility, Reliability, and Validity Study. Pediatr Phys Ther. 2011;23(3):289–99.PubMedCrossRef Hébert LJ, Maltais DB, Lepage C, Saulnier J, Crête M, Perron M. Isometric Muscle Strength in Youth Assessed by Hand-held Dynamometry: A Feasibility, Reliability, and Validity Study A Feasibility, Reliability, and Validity Study. Pediatr Phys Ther. 2011;23(3):289–99.PubMedCrossRef
38.
go back to reference Richards L, Palmiter-Thomas P. Grip strength measurement: a critical review of tools, methods, and clinical utility. Crit Rev Phys Rehabil Med. 1996;8(1–2). Richards L, Palmiter-Thomas P. Grip strength measurement: a critical review of tools, methods, and clinical utility. Crit Rev Phys Rehabil Med. 1996;8(1–2).
39.
go back to reference Hamilton A, Balnave R, Adams R. Grip strength testing reliability. J Hand Ther. 1994;7(3):163–70.PubMedCrossRef Hamilton A, Balnave R, Adams R. Grip strength testing reliability. J Hand Ther. 1994;7(3):163–70.PubMedCrossRef
40.
go back to reference Bohannon RW. Test-Retest Reliability of Measurements of Hand-Grip Strength Obtained by Dynamometry from Older Adults: A Systematic Review of Research in the PubMed Database. J frailty aging. 2017;6(2):83–7.PubMed Bohannon RW. Test-Retest Reliability of Measurements of Hand-Grip Strength Obtained by Dynamometry from Older Adults: A Systematic Review of Research in the PubMed Database. J frailty aging. 2017;6(2):83–7.PubMed
41.
go back to reference Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11(1):1–21.CrossRef Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11(1):1–21.CrossRef
42.
go back to reference Gefen D, Straub D, Boudreau M-C. Structural equation modeling and regression: Guidelines for research practice. Commun Assoc Inf Syst. 2000;4(1):7. Gefen D, Straub D, Boudreau M-C. Structural equation modeling and regression: Guidelines for research practice. Commun Assoc Inf Syst. 2000;4(1):7.
43.
44.
go back to reference Chin WW, Marcolin BL, Newsted PR. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf Syst Res. 2003;14(2):189–217.CrossRef Chin WW, Marcolin BL, Newsted PR. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf Syst Res. 2003;14(2):189–217.CrossRef
45.
go back to reference Hair JF Jr, Hult GTM, Ringle C, Sarstedt M. A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications; 2016. Hair JF Jr, Hult GTM, Ringle C, Sarstedt M. A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications; 2016.
46.
go back to reference Götz O, Liehr-Gobbers K, Krafft M. Evaluation of structural equation models using the partial least squares (PLS) approach. In: Handbook of partial least squares. Springer; 2010. p. 691–711. Götz O, Liehr-Gobbers K, Krafft M. Evaluation of structural equation models using the partial least squares (PLS) approach. In: Handbook of partial least squares. Springer; 2010. p. 691–711.
47.
go back to reference Selles RW, Zuidam JM, Willemsen SP, Stam HJ, Hovius SER. Growth diagrams for grip strength in children. Clin Orthop Relat Res. 2010;468(1):217–23.PubMedCrossRef Selles RW, Zuidam JM, Willemsen SP, Stam HJ, Hovius SER. Growth diagrams for grip strength in children. Clin Orthop Relat Res. 2010;468(1):217–23.PubMedCrossRef
48.
go back to reference Häger-Ross C, Rösblad B. Norms for grip strength in children aged 4–16 years. Acta Paediatr. 2002;91(6):617–25.PubMedCrossRef Häger-Ross C, Rösblad B. Norms for grip strength in children aged 4–16 years. Acta Paediatr. 2002;91(6):617–25.PubMedCrossRef
49.
go back to reference Ramos E, Frontera WR, Llopart A, Feliciano D. Muscle strength and hormonal levels in adolescents: gender related differences. Int J Sports Med. 1998;19(8):526–31.PubMedCrossRef Ramos E, Frontera WR, Llopart A, Feliciano D. Muscle strength and hormonal levels in adolescents: gender related differences. Int J Sports Med. 1998;19(8):526–31.PubMedCrossRef
50.
go back to reference Gómez-Campos R, Andruske CL, De Arruda M, Sulla-Torres J, Pacheco-Carrillo J, Urra-Albornoz C, et al. Normative data for handgrip strength in children and adolescents in the Maule Region, Chile: Evaluation based on chronological and biological age. PLoS One. 2018;13(8):e0201033.PubMedPubMedCentralCrossRef Gómez-Campos R, Andruske CL, De Arruda M, Sulla-Torres J, Pacheco-Carrillo J, Urra-Albornoz C, et al. Normative data for handgrip strength in children and adolescents in the Maule Region, Chile: Evaluation based on chronological and biological age. PLoS One. 2018;13(8):e0201033.PubMedPubMedCentralCrossRef
51.
go back to reference Omar MTA, Alghadir A, Al Baker S. Norms for hand grip strength in children aged 6–12 years in Saudi Arabia. Dev Neurorehabil. 2015;18(1):59–64.PubMedCrossRef Omar MTA, Alghadir A, Al Baker S. Norms for hand grip strength in children aged 6–12 years in Saudi Arabia. Dev Neurorehabil. 2015;18(1):59–64.PubMedCrossRef
52.
go back to reference de Souza MA, Benedicto MMB, Pizzato TM, Mattiello-Sverzut AC. Normative data for hand grip strength in healthy children measured with a bulb dynamometer: a cross-sectional study. Physiotherapy. 2014;100(4):313–8.PubMedCrossRef de Souza MA, Benedicto MMB, Pizzato TM, Mattiello-Sverzut AC. Normative data for hand grip strength in healthy children measured with a bulb dynamometer: a cross-sectional study. Physiotherapy. 2014;100(4):313–8.PubMedCrossRef
53.
go back to reference Celis-Morales CA, Petermann F, Steell L, Anderson J, Welsh P, Mackay DF, et al. Associations of dietary protein intake with fat-free mass and grip strength: a cross-sectional study in 146,816 UK Biobank participants. Am J Epidemiol. 2018;187(11):2405–14.PubMedCrossRef Celis-Morales CA, Petermann F, Steell L, Anderson J, Welsh P, Mackay DF, et al. Associations of dietary protein intake with fat-free mass and grip strength: a cross-sectional study in 146,816 UK Biobank participants. Am J Epidemiol. 2018;187(11):2405–14.PubMedCrossRef
54.
go back to reference Heath B, Shelton M, Stief C, Summerson S. Handgrip Strength Positively Correlates With Percent Fat Free Mass in Students at Messiah College. In: International Journal of Exercise Science: Conference Proceedings. 2019. p. 42. Heath B, Shelton M, Stief C, Summerson S. Handgrip Strength Positively Correlates With Percent Fat Free Mass in Students at Messiah College. In: International Journal of Exercise Science: Conference Proceedings. 2019. p. 42.
55.
go back to reference Round JM, Jones DA, Honour JW, Nevill AM. Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol. 1999;26(1):49–62.PubMedCrossRef Round JM, Jones DA, Honour JW, Nevill AM. Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol. 1999;26(1):49–62.PubMedCrossRef
56.
go back to reference Dore E, Martin R, Ratel S, Duché P, Bedu M, Van Praagh E. Gender differences in peak muscle performance during growth. Int J Sports Med. 2005;26(4):274–80.PubMedCrossRef Dore E, Martin R, Ratel S, Duché P, Bedu M, Van Praagh E. Gender differences in peak muscle performance during growth. Int J Sports Med. 2005;26(4):274–80.PubMedCrossRef
57.
go back to reference Dempsey PG, Ayoub MM. The influence of gender, grasp type, pinch width and wrist position on sustained pinch strength. Int J Ind Ergon. 1996;17(3):259–73.CrossRef Dempsey PG, Ayoub MM. The influence of gender, grasp type, pinch width and wrist position on sustained pinch strength. Int J Ind Ergon. 1996;17(3):259–73.CrossRef
58.
go back to reference Sartorio A, Lafortuna CL, Pogliaghi S, Trecate L. The impact of gender, body dimension and body composition on hand-grip strength in healthy children. J Endocrinol Invest. 2002;25(5):431–5.PubMedCrossRef Sartorio A, Lafortuna CL, Pogliaghi S, Trecate L. The impact of gender, body dimension and body composition on hand-grip strength in healthy children. J Endocrinol Invest. 2002;25(5):431–5.PubMedCrossRef
59.
go back to reference Ng AK, Hairi NN, Jalaludin MY, Majid HA. Dietary intake, physical activity and muscle strength among adolescents: the Malaysian Health and Adolescents Longitudinal Research Team (MyHeART) study. BMJ Open. 2019;9(6):e026275.PubMedPubMedCentralCrossRef Ng AK, Hairi NN, Jalaludin MY, Majid HA. Dietary intake, physical activity and muscle strength among adolescents: the Malaysian Health and Adolescents Longitudinal Research Team (MyHeART) study. BMJ Open. 2019;9(6):e026275.PubMedPubMedCentralCrossRef
60.
go back to reference Rauch F, Neu CM, Wassmer G, Beck B, Rieger-Wettengl G, Rietschel E, et al. Muscle analysis by measurement of maximal isometric grip force: new reference data and clinical applications in pediatrics. Pediatr Res. 2002;51(4):505–10.PubMedCrossRef Rauch F, Neu CM, Wassmer G, Beck B, Rieger-Wettengl G, Rietschel E, et al. Muscle analysis by measurement of maximal isometric grip force: new reference data and clinical applications in pediatrics. Pediatr Res. 2002;51(4):505–10.PubMedCrossRef
61.
go back to reference Luna-Heredia E, Martín-Peña G, Ruiz-Galiana J. Handgrip dynamometry in healthy adults. Clin Nutr. 2005;24(2):250–8.PubMedCrossRef Luna-Heredia E, Martín-Peña G, Ruiz-Galiana J. Handgrip dynamometry in healthy adults. Clin Nutr. 2005;24(2):250–8.PubMedCrossRef
62.
go back to reference Cortell-Tormo JM, Pérez Turpin JA, Lucas Cuevas ÁG, Pérez-Soriano P, Llana Belloch S, Martínez Patiño MJ. Handgrip strength and hand dimensions in high-level inter-university judoists. 2013;9(1):21–8. Cortell-Tormo JM, Pérez Turpin JA, Lucas Cuevas ÁG, Pérez-Soriano P, Llana Belloch S, Martínez Patiño MJ. Handgrip strength and hand dimensions in high-level inter-university judoists. 2013;9(1):21–8.
63.
go back to reference Golub MS, Collman GW, Foster PMD, Kimmel CA, Rajpert-De Meyts E, Reiter EO, et al. Public health implications of altered puberty timing. Pediatrics. 2008;121(3):218–30.CrossRef Golub MS, Collman GW, Foster PMD, Kimmel CA, Rajpert-De Meyts E, Reiter EO, et al. Public health implications of altered puberty timing. Pediatrics. 2008;121(3):218–30.CrossRef
64.
go back to reference Boadella JM, Kuijer PP, Sluiter JK, Frings-Dresen MH. Effect of self-selected handgrip position on maximal handgrip strength. Arch Phys Med Rehabil. 2005;86(2):328–31.PubMedCrossRef Boadella JM, Kuijer PP, Sluiter JK, Frings-Dresen MH. Effect of self-selected handgrip position on maximal handgrip strength. Arch Phys Med Rehabil. 2005;86(2):328–31.PubMedCrossRef
65.
go back to reference Maleki-Ghahfarokhi A, Dianat I, Feizi H, Asghari-Jafarabadi M. Influences of gender, hand dominance, and anthropometric characteristics on different types of pinch strength: A partial least squares (PLS) approach. Appl Ergon. 2019;79(6):9–16.PubMedCrossRef Maleki-Ghahfarokhi A, Dianat I, Feizi H, Asghari-Jafarabadi M. Influences of gender, hand dominance, and anthropometric characteristics on different types of pinch strength: A partial least squares (PLS) approach. Appl Ergon. 2019;79(6):9–16.PubMedCrossRef
66.
go back to reference Rostamzadeh S, Saremi M, Bradtmiller B. Age, gender and side-stratified grip strength norms and related socio-demographic factors for 20–80 years Iranian healthy population: Comparison with consolidated and international norms. Int J Ind Ergon. 2020;80:103003.CrossRef Rostamzadeh S, Saremi M, Bradtmiller B. Age, gender and side-stratified grip strength norms and related socio-demographic factors for 20–80 years Iranian healthy population: Comparison with consolidated and international norms. Int J Ind Ergon. 2020;80:103003.CrossRef
67.
go back to reference Nicolay CW, Walker AL. Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. Int J Ind Ergon. 2005;35(7):605–18.CrossRef Nicolay CW, Walker AL. Grip strength and endurance: Influences of anthropometric variation, hand dominance, and gender. Int J Ind Ergon. 2005;35(7):605–18.CrossRef
68.
go back to reference Bohannon RW, Wang Y-C, Bubela D, Gershon RC. Handgrip strength: a population-based study of norms and age trajectories for 3-to 17-year-olds. Pediatr Phys Ther. 2017;29(2):118–23.PubMedCrossRef Bohannon RW, Wang Y-C, Bubela D, Gershon RC. Handgrip strength: a population-based study of norms and age trajectories for 3-to 17-year-olds. Pediatr Phys Ther. 2017;29(2):118–23.PubMedCrossRef
69.
go back to reference Parker DF, Round JM, Sacco P, Jones DA. A cross-sectional survey of upper and lower limb strength in boys and girls during childhood and adolescence. Ann Hum Biol. 1990;17(3):199–211.PubMedCrossRef Parker DF, Round JM, Sacco P, Jones DA. A cross-sectional survey of upper and lower limb strength in boys and girls during childhood and adolescence. Ann Hum Biol. 1990;17(3):199–211.PubMedCrossRef
Metadata
Title
Analysis of hand-forearm anthropometric components in assessing handgrip and pinch strengths of school-aged children and adolescents: a partial least squares (PLS) approach
Authors
Sajjad Rostamzadeh
Mahnaz Saremi
Shahram Vosoughi
Bruce Bradtmiller
Leila Janani
Ali Asghar Farshad
Fereshteh Taheri
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02468-0

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue