Skip to main content
Top
Published in: BMC Cancer 1/2006

Open Access 01-12-2006 | Research article

Analysis of folylpoly-γ-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells

Authors: Guy J Leclerc, Gilles M Leclerc, Ting Ting Hsieh Kinser, Julio C Barredo

Published in: BMC Cancer | Issue 1/2006

Login to get access

Abstract

Background

Expression of folylpoly-γ-glutamate synthetase (FPGS) gene is two- to three-fold higher in B-precursor ALL (Bp- ALL) than in T-lineage ALL (T-ALL) and correlates with intracellular accumulation of methotrexate (MTX) polyglutamates and lymphoblast sensitivity to MTX. In this report, we investigated the molecular regulatory mechanisms directing FPGS gene expression in Bp-ALL and T-ALL cells.

Methods

To determine FPGS transcription rate in Bp-ALL and T-ALL we used nuclear run-on assays. 5'-RACE was used to uncover potential regulatory regions involved in the lineage differences. We developed a luciferase reporter gene assay to investigate FPGS promoter/enhancer activity. To further characterize the FPGS proximal promoter, we determined the role of the putative transcription binding sites NFY and E-box on FPGS expression using luciferase reporter gene assays with substitution mutants and EMSA.

Results

FPGS transcription initiation rate was 1.6-fold higher in NALM6 vs. CCRF-CEM cells indicating that differences in transcription rate led to the observed lineage differences in FPGS expression between Bp-ALL and T-ALL blasts. Two major transcripts encoding the mitochondrial/cytosolic and cytosolic isoforms were detected in Bp-ALL (NALM6 and REH) whereas in T-ALL (CCRF-CEM) cells only the mitochondrial/cytosolic transcript was detected. In all DNA fragments examined for promoter/enhancer activity, we measured significantly lower luciferase activity in NALM6 vs. CCRF-CEM cells, suggesting the need for additional yet unidentified regulatory elements in Bp-ALL. Finally, we determined that the putative transcription factor binding site NFY, but not E-box, plays a role in FPGS transcription in both Bp- and T-lineage.

Conclusion

We demonstrated that the minimal FPGS promoter region previously described in CCRF-CEM is not sufficient to effectively drive FPGS transcription in NALM6 cells, suggesting that different regulatory elements are required for FPGS gene expression in Bp-cells. Our data indicate that the control of FPGS expression in human hematopoietic cells is complex and involves lineage-specific differences in regulatory elements, transcription initiation rates, and mRNA processing. Understanding the lineage-specific mechanisms of FPGS expression should lead to improved therapeutic strategies aimed at overcoming MTX resistance or inducing apoptosis in leukemic cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference McGuire JJ, Bertino JR: Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem. 1981, 38 Spec No (Pt 1): 19-48. 10.1007/BF00235686.CrossRefPubMed McGuire JJ, Bertino JR: Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem. 1981, 38 Spec No (Pt 1): 19-48. 10.1007/BF00235686.CrossRefPubMed
2.
go back to reference McGuire JJ, Hsieh P, Coward JK, Bertino JR: Enzymatic synthesis of folylpolyglutamates. Characterization of the reaction and its products. J Biol Chem. 1980, 255 (12): 5776-5788.PubMed McGuire JJ, Hsieh P, Coward JK, Bertino JR: Enzymatic synthesis of folylpolyglutamates. Characterization of the reaction and its products. J Biol Chem. 1980, 255 (12): 5776-5788.PubMed
3.
go back to reference Moran RG, Colman PD, Rosowsky A, Forsch RA, Chan KK: Structural features of 4-amino antifolates required for substrate activity with mammalian folylpolyglutamate synthetase. Mol Pharmacol. 1985, 27 (1): 156-166.PubMed Moran RG, Colman PD, Rosowsky A, Forsch RA, Chan KK: Structural features of 4-amino antifolates required for substrate activity with mammalian folylpolyglutamate synthetase. Mol Pharmacol. 1985, 27 (1): 156-166.PubMed
4.
go back to reference Synold TW, Willits EM, Barredo JC: Role of folylpolygutamate synthetase (FPGS) in antifolate chemotherapy; a biochemical and clinical update. Leuk Lymphoma. 1996, 21 (1-2): 9-15.CrossRefPubMed Synold TW, Willits EM, Barredo JC: Role of folylpolygutamate synthetase (FPGS) in antifolate chemotherapy; a biochemical and clinical update. Leuk Lymphoma. 1996, 21 (1-2): 9-15.CrossRefPubMed
5.
go back to reference Baldwin SW, Tse A, Gossett LS, Taylor EC, Rosowsky A, Shih C, Moran RG: Structural features of 5,10-dideaza-5,6,7,8-tetrahydrofolate that determine inhibition of mammalian glycinamide ribonucleotide formyltransferase. Biochemistry. 1991, 30 (7): 1997-2006. 10.1021/bi00221a037.CrossRefPubMed Baldwin SW, Tse A, Gossett LS, Taylor EC, Rosowsky A, Shih C, Moran RG: Structural features of 5,10-dideaza-5,6,7,8-tetrahydrofolate that determine inhibition of mammalian glycinamide ribonucleotide formyltransferase. Biochemistry. 1991, 30 (7): 1997-2006. 10.1021/bi00221a037.CrossRefPubMed
6.
go back to reference Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR: ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res. 1991, 51 (20): 5579-5586.PubMed Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, Judson IR, Hughes LR: ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res. 1991, 51 (20): 5579-5586.PubMed
7.
go back to reference Rots MG, Willey JC, Jansen G, Van Zantwijk CH, Noordhuis P, DeMuth JP, Kuiper E, Veerman AJ, Pieters R, Peters GJ: mRNA expression levels of methotrexate resistance-related proteins in childhood leukemia as determined by a standardized competitive template-based RT-PCR method. Leukemia. 2000, 14 (12): 2166-2175. 10.1038/sj.leu.2401943.CrossRefPubMed Rots MG, Willey JC, Jansen G, Van Zantwijk CH, Noordhuis P, DeMuth JP, Kuiper E, Veerman AJ, Pieters R, Peters GJ: mRNA expression levels of methotrexate resistance-related proteins in childhood leukemia as determined by a standardized competitive template-based RT-PCR method. Leukemia. 2000, 14 (12): 2166-2175. 10.1038/sj.leu.2401943.CrossRefPubMed
8.
go back to reference Barredo J, Moran RG: Determinants of antifolate cytotoxicity: folylpolyglutamate synthetase activity during cellular proliferation and development. Mol Pharmacol. 1992, 42 (4): 687-694.PubMed Barredo J, Moran RG: Determinants of antifolate cytotoxicity: folylpolyglutamate synthetase activity during cellular proliferation and development. Mol Pharmacol. 1992, 42 (4): 687-694.PubMed
9.
go back to reference Barredo JC, Synold TW, Laver J, Relling MV, Pui CH, Priest DG, Evans WE: Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood. 1994, 84 (2): 564-569.PubMed Barredo JC, Synold TW, Laver J, Relling MV, Pui CH, Priest DG, Evans WE: Differences in constitutive and post-methotrexate folylpolyglutamate synthetase activity in B-lineage and T-lineage leukemia. Blood. 1994, 84 (2): 564-569.PubMed
10.
go back to reference Egan MG, Sirlin S, Rumberger BG, Garrow TA, Shane B, Sirotnak FM: Rapid decline in folylpolyglutamate synthetase activity and gene expression during maturation of HL-60 cells. Nature of the effect, impact on folate compound polyglutamate pools, and evidence for programmed down-regulation during maturation. J Biol Chem. 1995, 270 (10): 5462-5468. 10.1074/jbc.270.10.5399.CrossRefPubMed Egan MG, Sirlin S, Rumberger BG, Garrow TA, Shane B, Sirotnak FM: Rapid decline in folylpolyglutamate synthetase activity and gene expression during maturation of HL-60 cells. Nature of the effect, impact on folate compound polyglutamate pools, and evidence for programmed down-regulation during maturation. J Biol Chem. 1995, 270 (10): 5462-5468. 10.1074/jbc.270.10.5399.CrossRefPubMed
11.
go back to reference Galpin AJ, Schuetz JD, Masson E, Yanishevski Y, Synold TW, Barredo JC, Pui CH, Relling MV, Evans WE: Differences in folylpolyglutamate synthetase and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic lymphoblasts: mechanisms for lineage differences in methotrexate polyglutamylation and cytotoxicity. Mol Pharmacol. 1997, 52 (1): 155-163.PubMed Galpin AJ, Schuetz JD, Masson E, Yanishevski Y, Synold TW, Barredo JC, Pui CH, Relling MV, Evans WE: Differences in folylpolyglutamate synthetase and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic lymphoblasts: mechanisms for lineage differences in methotrexate polyglutamylation and cytotoxicity. Mol Pharmacol. 1997, 52 (1): 155-163.PubMed
12.
go back to reference Chen L, Qi H, Korenberg J, Garrow TA, Choi YJ, Shane B: Purification and properties of human cytosolic folylpoly-gamma-glutamate synthetase and organization, localization, and differential splicing of its gene. J Biol Chem. 1996, 271 (22): 13077-13087. 10.1074/jbc.271.22.13077.CrossRefPubMed Chen L, Qi H, Korenberg J, Garrow TA, Choi YJ, Shane B: Purification and properties of human cytosolic folylpoly-gamma-glutamate synthetase and organization, localization, and differential splicing of its gene. J Biol Chem. 1996, 271 (22): 13077-13087. 10.1074/jbc.271.22.13077.CrossRefPubMed
13.
go back to reference Freemantle SJ, Taylor SM, Krystal G, Moran RG: Upstream organization of and multiple transcripts from the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem. 1995, 270 (16): 9579-9584. 10.1074/jbc.270.16.9579.CrossRefPubMed Freemantle SJ, Taylor SM, Krystal G, Moran RG: Upstream organization of and multiple transcripts from the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem. 1995, 270 (16): 9579-9584. 10.1074/jbc.270.16.9579.CrossRefPubMed
14.
go back to reference Turner FB, Taylor SM, Moran RG: Expression patterns of the multiple transcripts from the folylpolyglutamate synthetase gene in human leukemias and normal differentiated tissues. J Biol Chem. 2000, 275 (46): 35960-35968. 10.1074/jbc.M005228200.CrossRefPubMed Turner FB, Taylor SM, Moran RG: Expression patterns of the multiple transcripts from the folylpolyglutamate synthetase gene in human leukemias and normal differentiated tissues. J Biol Chem. 2000, 275 (46): 35960-35968. 10.1074/jbc.M005228200.CrossRefPubMed
15.
go back to reference Leclerc GJ, Barredo JC: Folylpoly-gamma-glutamate synthetase gene mRNA splice variants and protein expression in primary human leukemia cells, cell lines, and normal human tissues. Clin Cancer Res. 2001, 7 (4): 942-951.PubMed Leclerc GJ, Barredo JC: Folylpoly-gamma-glutamate synthetase gene mRNA splice variants and protein expression in primary human leukemia cells, cell lines, and normal human tissues. Clin Cancer Res. 2001, 7 (4): 942-951.PubMed
16.
go back to reference Turner FB, Andreassi 2nd JL, Ferguson J, Titus S, Tse A, Taylor SM, Moran RG: Tissue-specific expression of functional isoforms of mouse folypoly-gamma-glutamae synthetase: a basis for targeting folate antimetabolites. Cancer Res. 1999, 59 (24): 6074-6079.PubMed Turner FB, Andreassi 2nd JL, Ferguson J, Titus S, Tse A, Taylor SM, Moran RG: Tissue-specific expression of functional isoforms of mouse folypoly-gamma-glutamae synthetase: a basis for targeting folate antimetabolites. Cancer Res. 1999, 59 (24): 6074-6079.PubMed
17.
go back to reference Freemantle SJ, Moran RG: Transcription of the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem. 1997, 272 (40): 25373-25379. 10.1074/jbc.272.40.25373.CrossRefPubMed Freemantle SJ, Moran RG: Transcription of the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem. 1997, 272 (40): 25373-25379. 10.1074/jbc.272.40.25373.CrossRefPubMed
18.
go back to reference Leclerc GJ, Leclerc GM, Barredo JC: Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines. Cancer Cell Int. 2002, 2 (1): 1-10.1186/1475-2867-2-1.CrossRefPubMedPubMedCentral Leclerc GJ, Leclerc GM, Barredo JC: Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines. Cancer Cell Int. 2002, 2 (1): 1-10.1186/1475-2867-2-1.CrossRefPubMedPubMedCentral
19.
go back to reference Hanson RD, Connolly NL, Burnett D, Campbell EJ, Senior RM, Ley TJ: Developmental regulation of the human cathepsin G gene in myelomonocytic cells. J Biol Chem. 1990, 265 (3): 1524-1530.PubMed Hanson RD, Connolly NL, Burnett D, Campbell EJ, Senior RM, Ley TJ: Developmental regulation of the human cathepsin G gene in myelomonocytic cells. J Biol Chem. 1990, 265 (3): 1524-1530.PubMed
20.
go back to reference Antequera F, Boyes J, Bird A: High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 1990, 62 (3): 503-514. 10.1016/0092-8674(90)90015-7.CrossRefPubMed Antequera F, Boyes J, Bird A: High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 1990, 62 (3): 503-514. 10.1016/0092-8674(90)90015-7.CrossRefPubMed
22.
go back to reference Brown ST, Miranda GA, Galic Z, Hartman IZ, Lyon CJ, Aguilera RJ: Regulation of the RAG-1 promoter by the NF-Y transcription factor. J Immunol. 1997, 158 (11): 5071-5074.PubMed Brown ST, Miranda GA, Galic Z, Hartman IZ, Lyon CJ, Aguilera RJ: Regulation of the RAG-1 promoter by the NF-Y transcription factor. J Immunol. 1997, 158 (11): 5071-5074.PubMed
23.
go back to reference Nomura M, Bartsch S, Nawata H, Omura T, Morohashi K: An E box element is required for the expression of the ad4bp gene, a mammalian homologue of ftz-f1 gene, which is essential for adrenal and gonadal development. J Biol Chem. 1995, 270 (13): 7453-7461. 10.1074/jbc.270.13.7453.CrossRefPubMed Nomura M, Bartsch S, Nawata H, Omura T, Morohashi K: An E box element is required for the expression of the ad4bp gene, a mammalian homologue of ftz-f1 gene, which is essential for adrenal and gonadal development. J Biol Chem. 1995, 270 (13): 7453-7461. 10.1074/jbc.270.13.7453.CrossRefPubMed
24.
go back to reference Chodosh LA, Baldwin AS, Carthew RW, Sharp PA: Human CCAAT-binding proteins have heterologous subunits. Cell. 1988, 53 (1): 11-24. 10.1016/0092-8674(88)90483-7.CrossRefPubMed Chodosh LA, Baldwin AS, Carthew RW, Sharp PA: Human CCAAT-binding proteins have heterologous subunits. Cell. 1988, 53 (1): 11-24. 10.1016/0092-8674(88)90483-7.CrossRefPubMed
25.
go back to reference Zhu QS, Qian B, Levy D: CCAAT/enhancer-binding protein alpha (C/EBPalpha) activates transcription of the human microsomal epoxide hydrolase gene (EPHX1) through the interaction with DNA-bound NF-Y. J Biol Chem. 2004, 279 (29): 29902-29910. 10.1074/jbc.M400438200.CrossRefPubMed Zhu QS, Qian B, Levy D: CCAAT/enhancer-binding protein alpha (C/EBPalpha) activates transcription of the human microsomal epoxide hydrolase gene (EPHX1) through the interaction with DNA-bound NF-Y. J Biol Chem. 2004, 279 (29): 29902-29910. 10.1074/jbc.M400438200.CrossRefPubMed
26.
go back to reference Mantovani R: The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999, 239 (1): 15-27. 10.1016/S0378-1119(99)00368-6.CrossRefPubMed Mantovani R: The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999, 239 (1): 15-27. 10.1016/S0378-1119(99)00368-6.CrossRefPubMed
27.
go back to reference Kurioka H, Kishi H, Isshiki H, Tagoh H, Mori K, Kitagawa T, Nagata T, Dohi K, Muraguchi A: Isolation and characterization of a TATA-less promoter for the human RAG-1 gene. Mol Immunol. 1996, 33 (13): 1059-1066. 10.1016/S0161-5890(96)00062-4.CrossRefPubMed Kurioka H, Kishi H, Isshiki H, Tagoh H, Mori K, Kitagawa T, Nagata T, Dohi K, Muraguchi A: Isolation and characterization of a TATA-less promoter for the human RAG-1 gene. Mol Immunol. 1996, 33 (13): 1059-1066. 10.1016/S0161-5890(96)00062-4.CrossRefPubMed
28.
go back to reference Huang DY, Kuo YY, Lai JS, Suzuki Y, Sugano S, Chang ZF: GATA-1 and NF-Y cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic Acids Res. 2004, 32 (13): 3935-3946. 10.1093/nar/gkh719.CrossRefPubMedPubMedCentral Huang DY, Kuo YY, Lai JS, Suzuki Y, Sugano S, Chang ZF: GATA-1 and NF-Y cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic Acids Res. 2004, 32 (13): 3935-3946. 10.1093/nar/gkh719.CrossRefPubMedPubMedCentral
29.
go back to reference Cassel DL, Subudhi SK, Surrey S, McKenzie SE: GATA and NF-Y participate in transcriptional regulation of FcgammaRIIA in megakaryocytic cells. Blood Cells Mol Dis. 2000, 26 (6): 587-597. 10.1006/bcmd.2000.0337.CrossRefPubMed Cassel DL, Subudhi SK, Surrey S, McKenzie SE: GATA and NF-Y participate in transcriptional regulation of FcgammaRIIA in megakaryocytic cells. Blood Cells Mol Dis. 2000, 26 (6): 587-597. 10.1006/bcmd.2000.0337.CrossRefPubMed
30.
go back to reference Liang F, Schaufele F, Gardner DG: Functional interaction of NF-Y and Sp1 is required for type a natriuretic peptide receptor gene transcription. J Biol Chem. 2001, 276 (2): 1516-1522. 10.1074/jbc.M006350200.CrossRefPubMed Liang F, Schaufele F, Gardner DG: Functional interaction of NF-Y and Sp1 is required for type a natriuretic peptide receptor gene transcription. J Biol Chem. 2001, 276 (2): 1516-1522. 10.1074/jbc.M006350200.CrossRefPubMed
31.
go back to reference Cross SH, Bird AP: CpG islands and genes. Curr Opin Genet Dev. 1995, 5 (3): 309-314. 10.1016/0959-437X(95)80044-1.CrossRefPubMed Cross SH, Bird AP: CpG islands and genes. Curr Opin Genet Dev. 1995, 5 (3): 309-314. 10.1016/0959-437X(95)80044-1.CrossRefPubMed
32.
Metadata
Title
Analysis of folylpoly-γ-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells
Authors
Guy J Leclerc
Gilles M Leclerc
Ting Ting Hsieh Kinser
Julio C Barredo
Publication date
01-12-2006
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2006
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-6-132

Other articles of this Issue 1/2006

BMC Cancer 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine