Skip to main content
Top
Published in: European Spine Journal 6/2017

Open Access 01-06-2017 | Original Article

Analysing a mechanism of failure in retrieved magnetically controlled spinal rods

Authors: Vasiliki C. Panagiotopoulou, Stewart K. Tucker, Robert K. Whittaker, Harry S. Hothi, Johann Henckel, Julian J. H. Leong, Thomas Ember, John A. Skinner, Alister J. Hart

Published in: European Spine Journal | Issue 6/2017

Login to get access

Abstract

Purpose

We aim to describe a mechanism of failure in magnetically controlled growth rods which are used for the correction of the early onset scoliosis.

Methods

This retrieval study involved nine magnetically controlled growth rods, of a single design, revised from five patients for metal staining, progression of scoliosis, swelling, fractured actuator pin, and final fusion. All the retrieved rods were radiographed and assessed macroscopically and microscopically for material loss. Two implants were further analysed using micro-CT scanning and then sectioned to allow examination of the internal mechanism. No funding was obtained to analyse these implants. There were no potential conflicts interests.

Results

Plain radiographs revealed that three out of nine retrieved rods had a fractured pin. All had evidence of surface degradation on the extendable telescopic rod. There was considerable corrosion along the internal mechanism.

Conclusions

We found that a third of the retrieved magnetically controlled growth rods had failed due to pin fracture secondary to corrosion of the internal mechanism. We recommend that surgeons consider that any inability of magnetically controlled growth rods to distract may be due to corrosive debris building up inside the mechanism, thereby preventing normal function.
Literature
1.
go back to reference Gillingham BL, Fan RA, Akbarnia BA (2006) Early onset idiopathic scoliosis. J Am Acad Orthop Surg 14(2):101–112CrossRefPubMed Gillingham BL, Fan RA, Akbarnia BA (2006) Early onset idiopathic scoliosis. J Am Acad Orthop Surg 14(2):101–112CrossRefPubMed
2.
go back to reference Campbell RM, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N et al (2003) The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Jt Surg Am 85(3):399–408CrossRef Campbell RM, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N et al (2003) The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Jt Surg Am 85(3):399–408CrossRef
3.
go back to reference Goldberg C, Gillic I, Connaughton O, Moore D, Fogarty E, Canny G et al (2003) Respiratory function and cosmesis at maturity in infantile-onset scoliosis. Spine 28(20):2397–2406CrossRefPubMed Goldberg C, Gillic I, Connaughton O, Moore D, Fogarty E, Canny G et al (2003) Respiratory function and cosmesis at maturity in infantile-onset scoliosis. Spine 28(20):2397–2406CrossRefPubMed
4.
go back to reference Cunin V (2015) Early-onset scoliosis–current treatment. Orthop Traumatol Surg Res 101(1):S109–S118CrossRefPubMed Cunin V (2015) Early-onset scoliosis–current treatment. Orthop Traumatol Surg Res 101(1):S109–S118CrossRefPubMed
5.
go back to reference Mehta M (2005) Growth as a corrective force in the early treatment of progressive infantile scoliosis. J Bone Jt Surg Br 87(9):1237–1247CrossRef Mehta M (2005) Growth as a corrective force in the early treatment of progressive infantile scoliosis. J Bone Jt Surg Br 87(9):1237–1247CrossRef
6.
go back to reference Yoon WW, Sedra F, Shah S, Wallis C, Muntoni F, Noordeen H (2014) Improvement of pulmonary function in children with early-onset scoliosis using magnetic growth rods. Spine. 39(15):1196–1202CrossRefPubMed Yoon WW, Sedra F, Shah S, Wallis C, Muntoni F, Noordeen H (2014) Improvement of pulmonary function in children with early-onset scoliosis using magnetic growth rods. Spine. 39(15):1196–1202CrossRefPubMed
8.
go back to reference Hickey B, Towriss C, Baxter G, Yasso S, James S, Jones A et al (2014) Early experience of MAGEC magnetic growing rods in the treatment of early onset scoliosis. Eur Spine J 23(1):61–65CrossRefPubMedCentral Hickey B, Towriss C, Baxter G, Yasso S, James S, Jones A et al (2014) Early experience of MAGEC magnetic growing rods in the treatment of early onset scoliosis. Eur Spine J 23(1):61–65CrossRefPubMedCentral
9.
go back to reference Jenks M, Craig J, Higgins J, Willits I, Barata T, Wood H et al (2014) The MAGEC system for spinal lengthening in children with scoliosis: a NICE Medical Technology Guidance. Appl Health Econ Health Policy 12(6):587–599CrossRefPubMedPubMedCentral Jenks M, Craig J, Higgins J, Willits I, Barata T, Wood H et al (2014) The MAGEC system for spinal lengthening in children with scoliosis: a NICE Medical Technology Guidance. Appl Health Econ Health Policy 12(6):587–599CrossRefPubMedPubMedCentral
10.
go back to reference Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine 30(17S):S46–S57CrossRefPubMed Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine 30(17S):S46–S57CrossRefPubMed
11.
go back to reference Cheung KMC, Cheung JPY, Samartzis D, Mak KC, Wong YW, Cheung WY et al (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379(9830):1967–1974CrossRefPubMed Cheung KMC, Cheung JPY, Samartzis D, Mak KC, Wong YW, Cheung WY et al (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379(9830):1967–1974CrossRefPubMed
12.
go back to reference Keskinen H, Helenius I, Nnadi C, Cheung K, Ferguson J, Mundis G, Pawelek J, Akbarnia BA (2016) Preliminary comparison of primary and conversion surgery with magnetically controlled growing rods in children with early onset scoliosis. Eur Spine J 25(10):3294–3300 Keskinen H, Helenius I, Nnadi C, Cheung K, Ferguson J, Mundis G, Pawelek J, Akbarnia BA (2016) Preliminary comparison of primary and conversion surgery with magnetically controlled growing rods in children with early onset scoliosis. Eur Spine J 25(10):3294–3300
13.
go back to reference Stokes OM, O’ Donovan EJ, Samartzis D, Bow CH, Luk KDK, Cheung KMC (2014) Reducing radiation exposure in early-onset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine J 14(10):2397–2404CrossRefPubMed Stokes OM, O’ Donovan EJ, Samartzis D, Bow CH, Luk KDK, Cheung KMC (2014) Reducing radiation exposure in early-onset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine J 14(10):2397–2404CrossRefPubMed
14.
go back to reference Yoon WY, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H (2015) The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J 24:1422–1426CrossRefPubMed Yoon WY, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H (2015) The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J 24:1422–1426CrossRefPubMed
15.
go back to reference Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR et al (2016) Magnetic controlled growing rods for early onset scoliosis: a 4-year follow up. Spine J 16(4 Suppl):S34–S39CrossRefPubMed Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR et al (2016) Magnetic controlled growing rods for early onset scoliosis: a 4-year follow up. Spine J 16(4 Suppl):S34–S39CrossRefPubMed
16.
go back to reference Jones CS, Stokes OM, Patel SB, Clarke AJ, Hutton M (2015) Actuator pin fracture in magnetically controlled growing rods: two cases. Spine J 16(4):e287–e291CrossRefPubMed Jones CS, Stokes OM, Patel SB, Clarke AJ, Hutton M (2015) Actuator pin fracture in magnetically controlled growing rods: two cases. Spine J 16(4):e287–e291CrossRefPubMed
17.
go back to reference Cheung JP, Cahill P, Yaszay B, Akbarnia BA, Cheung KMC (2015) Special article: update on the magnetically controlled growing rod: tips and pitfalls. J Orthop Surg 23(3):383–390CrossRef Cheung JP, Cahill P, Yaszay B, Akbarnia BA, Cheung KMC (2015) Special article: update on the magnetically controlled growing rod: tips and pitfalls. J Orthop Surg 23(3):383–390CrossRef
18.
go back to reference Annual Meeting of the British Scoliosis Society (2016) Annual Meeting of the British Scoliosis Society (2016)
19.
go back to reference Akazawa T, Minami S, Takahashi K, Kotani T, Hanawa T, Moriya H (2005) Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Sci 10(2):200–205CrossRefPubMed Akazawa T, Minami S, Takahashi K, Kotani T, Hanawa T, Moriya H (2005) Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Sci 10(2):200–205CrossRefPubMed
20.
go back to reference Bess S, Akbarnia BA, Thompson GH, Sponseller PD, Shah SA, El Sebaie H et al (2010) Complications of growing-rod treatment for early-onset scoliosis. J Bone Jt Surg Am 92(15):2533–2543CrossRef Bess S, Akbarnia BA, Thompson GH, Sponseller PD, Shah SA, El Sebaie H et al (2010) Complications of growing-rod treatment for early-onset scoliosis. J Bone Jt Surg Am 92(15):2533–2543CrossRef
21.
go back to reference Caldas JCS, Pais-Ribeiro JL, Carneiro SR (2004) General anesthesia, surgery and hospitalization in children and their effects upon cognitive, academic, emotional and sociobehavioral development—a review. Pediatr Anesth 14(11):910–915CrossRef Caldas JCS, Pais-Ribeiro JL, Carneiro SR (2004) General anesthesia, surgery and hospitalization in children and their effects upon cognitive, academic, emotional and sociobehavioral development—a review. Pediatr Anesth 14(11):910–915CrossRef
22.
go back to reference Yang JS, Sponseller PD, Thompson GH, Akbarnia BA, Emans JB, Yazici M et al (2011) Growing rod fractures: risk factors and opportunities for prevention. Spine. 36(20):1639–1644CrossRefPubMed Yang JS, Sponseller PD, Thompson GH, Akbarnia BA, Emans JB, Yazici M et al (2011) Growing rod fractures: risk factors and opportunities for prevention. Spine. 36(20):1639–1644CrossRefPubMed
23.
go back to reference Yamanaka K, Mori M, Yamazaki K, Kumagai R, Doita M, Chiba A (2015) Analysis of the fracture mechanism of Ti-6Al-4V alloy rods that failed clinically after spinal instrumentation surgery. Spine 40(13):E767CrossRefPubMed Yamanaka K, Mori M, Yamazaki K, Kumagai R, Doita M, Chiba A (2015) Analysis of the fracture mechanism of Ti-6Al-4V alloy rods that failed clinically after spinal instrumentation surgery. Spine 40(13):E767CrossRefPubMed
Metadata
Title
Analysing a mechanism of failure in retrieved magnetically controlled spinal rods
Authors
Vasiliki C. Panagiotopoulou
Stewart K. Tucker
Robert K. Whittaker
Harry S. Hothi
Johann Henckel
Julian J. H. Leong
Thomas Ember
John A. Skinner
Alister J. Hart
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 6/2017
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-016-4936-z

Other articles of this Issue 6/2017

European Spine Journal 6/2017 Go to the issue