Skip to main content
Top
Published in: Breast Cancer Research 1/2017

Open Access 01-12-2017 | Research article

An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation

Authors: Francisco J. Candido dos Reis, Gordon C. Wishart, Ed M. Dicks, David Greenberg, Jem Rashbass, Marjanka K. Schmidt, Alexandra J. van den Broek, Ian O. Ellis, Andrew Green, Emad Rakha, Tom Maishman, Diana M. Eccles, Paul D. P. Pharoah

Published in: Breast Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

PREDICT is a breast cancer prognostic and treatment benefit model implemented online. The overall fit of the model has been good in multiple independent case series, but PREDICT has been shown to underestimate breast cancer specific mortality in women diagnosed under the age of 40. Another limitation is the use of discrete categories for tumour size and node status resulting in ‘step’ changes in risk estimates on moving between categories. We have refitted the PREDICT prognostic model using the original cohort of cases from East Anglia with updated survival time in order to take into account age at diagnosis and to smooth out the survival function for tumour size and node status.

Methods

Multivariable Cox regression models were used to fit separate models for ER negative and ER positive disease. Continuous variables were fitted using fractional polynomials and a smoothed baseline hazard was obtained by regressing the baseline cumulative hazard for each patients against time using fractional polynomials. The fit of the prognostic models were then tested in three independent data sets that had also been used to validate the original version of PREDICT.

Results

In the model fitting data, after adjusting for other prognostic variables, there is an increase in risk of breast cancer specific mortality in younger and older patients with ER positive disease, with a substantial increase in risk for women diagnosed before the age of 35. In ER negative disease the risk increases slightly with age. The association between breast cancer specific mortality and both tumour size and number of positive nodes was non-linear with a more marked increase in risk with increasing size and increasing number of nodes in ER positive disease.
The overall calibration and discrimination of the new version of PREDICT (v2) was good and comparable to that of the previous version in both model development and validation data sets. However, the calibration of v2 improved over v1 in patients diagnosed under the age of 40.

Conclusions

The PREDICT v2 is an improved prognostication and treatment benefit model compared with v1. The online version should continue to aid clinical decision making in women with early breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12(1):R1. A published erratum appears in Breast Cancer Res. 2010;12(2):401.CrossRefPubMedPubMedCentral Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12(1):R1. A published erratum appears in Breast Cancer Res. 2010;12(2):401.CrossRefPubMedPubMedCentral
2.
go back to reference Kattan MW, Hess KR, Amin MB, Lu Y, Moons KG, Gershenwald JE, et al. American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine. CA Cancer J Clin. 2016;66(5):370–4.CrossRefPubMedPubMedCentral Kattan MW, Hess KR, Amin MB, Lu Y, Moons KG, Gershenwald JE, et al. American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine. CA Cancer J Clin. 2016;66(5):370–4.CrossRefPubMedPubMedCentral
3.
go back to reference Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al. In: American Joint Committee on Cancer (AJCC), editor. AJCC cancer staging manual. 8th ed. New York: Springer; 2016. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al. In: American Joint Committee on Cancer (AJCC), editor. AJCC cancer staging manual. 8th ed. New York: Springer; 2016.
4.
go back to reference Early Breast Cancer Trialists Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRef Early Breast Cancer Trialists Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRef
5.
go back to reference Wishart GC, Bajdik CD, Azzato EM, Dicks E, Greenberg DC, Rashbass J, et al. A population-based validation of the prognostic model PREDICT for early breast cancer. Eur J Surg Oncol. 2011;37(5):411–7.CrossRefPubMed Wishart GC, Bajdik CD, Azzato EM, Dicks E, Greenberg DC, Rashbass J, et al. A population-based validation of the prognostic model PREDICT for early breast cancer. Eur J Surg Oncol. 2011;37(5):411–7.CrossRefPubMed
6.
go back to reference de Glas NA, Bastiaannet E, Engels CC, de Craen AJ, Putter H, van de Velde CJ, et al. Validity of the online PREDICT tool in older patients with breast cancer: a population-based study. Br J Cancer. 2016;114(4):395–400.CrossRefPubMedPubMedCentral de Glas NA, Bastiaannet E, Engels CC, de Craen AJ, Putter H, van de Velde CJ, et al. Validity of the online PREDICT tool in older patients with breast cancer: a population-based study. Br J Cancer. 2016;114(4):395–400.CrossRefPubMedPubMedCentral
7.
go back to reference Engelhardt EG, van den Broek AJ, Linn SC, Wishart GC, Rutgers EJT, van de Velde AO, et al. Accuracy of the online prognostication tools PREDICT and Adjuvant! for early-stage breast cancer patients younger than 50 years. Eur J Cancer. 2017;78:37–44.CrossRefPubMed Engelhardt EG, van den Broek AJ, Linn SC, Wishart GC, Rutgers EJT, van de Velde AO, et al. Accuracy of the online prognostication tools PREDICT and Adjuvant! for early-stage breast cancer patients younger than 50 years. Eur J Cancer. 2017;78:37–44.CrossRefPubMed
8.
go back to reference Wong HS, Subramaniam S, Alias Z, Taib NA, Ho GF, Ng CH, et al. The predictive accuracy of PREDICT: a personalized decision-making tool for Southeast Asian women with breast cancer. Medicine (Baltimore). 2015;94(8):e593.CrossRef Wong HS, Subramaniam S, Alias Z, Taib NA, Ho GF, Ng CH, et al. The predictive accuracy of PREDICT: a personalized decision-making tool for Southeast Asian women with breast cancer. Medicine (Baltimore). 2015;94(8):e593.CrossRef
9.
go back to reference Maishman T, Copson E, Stanton L, Gerty S, Dicks E, Durcan L, Wishart GC, et al. An evaluation of the prognostic model PREDICT using the POSH cohort of women aged ≤40 years at breast cancer diagnosis. Br J Cancer. 2015;112(6):983–91.CrossRefPubMedPubMedCentral Maishman T, Copson E, Stanton L, Gerty S, Dicks E, Durcan L, Wishart GC, et al. An evaluation of the prognostic model PREDICT using the POSH cohort of women aged ≤40 years at breast cancer diagnosis. Br J Cancer. 2015;112(6):983–91.CrossRefPubMedPubMedCentral
10.
go back to reference Wishart GC, Rakha E, Green A, Ellis I, Ali HR, Provenzano E, et al. Inclusion of KI67 significantly improves performance of the PREDICT prognostication and prediction model for early breast cancer. BMC Cancer. 2014;14:908.CrossRefPubMedPubMedCentral Wishart GC, Rakha E, Green A, Ellis I, Ali HR, Provenzano E, et al. Inclusion of KI67 significantly improves performance of the PREDICT prognostication and prediction model for early breast cancer. BMC Cancer. 2014;14:908.CrossRefPubMedPubMedCentral
11.
go back to reference Wishart GC, Bajdik CD, Dicks E, Provenzano E, Schmidt MK, Sherman M, et al. PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br J Cancer. 2012;107(5):800–7.CrossRefPubMedPubMedCentral Wishart GC, Bajdik CD, Dicks E, Provenzano E, Schmidt MK, Sherman M, et al. PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br J Cancer. 2012;107(5):800–7.CrossRefPubMedPubMedCentral
12.
go back to reference Copson E, Eccles B, Maishman T, Gerty S, Stanton L, Cutress RI, et al. Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 years at diagnosis: the POSH study. J Natl Cancer Inst. 2013;105(13):978–88.CrossRefPubMed Copson E, Eccles B, Maishman T, Gerty S, Stanton L, Cutress RI, et al. Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 years at diagnosis: the POSH study. J Natl Cancer Inst. 2013;105(13):978–88.CrossRefPubMed
13.
go back to reference Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28(5):964–74.CrossRefPubMed Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28(5):964–74.CrossRefPubMed
14.
go back to reference Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.CrossRefPubMed Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007;26(30):5512–28.CrossRefPubMed
15.
go back to reference Early Breast Cancer Trialists Collaborative Group. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379(9814):432–44.CrossRef Early Breast Cancer Trialists Collaborative Group. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379(9814):432–44.CrossRef
16.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.CrossRefPubMed
17.
go back to reference Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One. 2009;4(11):e7695.CrossRefPubMedPubMedCentral Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One. 2009;4(11):e7695.CrossRefPubMedPubMedCentral
18.
go back to reference Gnerlich JL, Deshpande AD, Jeffe DB, Sweet A, White N, Margenthaler JA. Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J Am Coll Surg. 2009;208(3):341–7.CrossRefPubMedPubMedCentral Gnerlich JL, Deshpande AD, Jeffe DB, Sweet A, White N, Margenthaler JA. Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J Am Coll Surg. 2009;208(3):341–7.CrossRefPubMedPubMedCentral
19.
go back to reference Dobi A, Kelemen G, Kaizer L, Weiczner R, Thurzo L, Kahan Z. Breast cancer under 40 years of age: increasing number and worse prognosis. Pathol Oncol Res. 2011;17(2):425–8.CrossRefPubMed Dobi A, Kelemen G, Kaizer L, Weiczner R, Thurzo L, Kahan Z. Breast cancer under 40 years of age: increasing number and worse prognosis. Pathol Oncol Res. 2011;17(2):425–8.CrossRefPubMed
20.
go back to reference Brandt J, Garne JP, Tengrup I, Manjer J. Age at diagnosis in relation to survival following breast cancer: a cohort study. World J Surg Oncol. 2015;13:33.CrossRefPubMedPubMedCentral Brandt J, Garne JP, Tengrup I, Manjer J. Age at diagnosis in relation to survival following breast cancer: a cohort study. World J Surg Oncol. 2015;13:33.CrossRefPubMedPubMedCentral
21.
go back to reference Chen HL, Zhou MQ, Tian W, Meng KX, He HF. Effect of age on breast cancer patient prognoses: a population-based study using the SEER 18 database. PLoS One. 2016;11(10):e0165409.CrossRefPubMedPubMedCentral Chen HL, Zhou MQ, Tian W, Meng KX, He HF. Effect of age on breast cancer patient prognoses: a population-based study using the SEER 18 database. PLoS One. 2016;11(10):e0165409.CrossRefPubMedPubMedCentral
Metadata
Title
An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation
Authors
Francisco J. Candido dos Reis
Gordon C. Wishart
Ed M. Dicks
David Greenberg
Jem Rashbass
Marjanka K. Schmidt
Alexandra J. van den Broek
Ian O. Ellis
Andrew Green
Emad Rakha
Tom Maishman
Diana M. Eccles
Paul D. P. Pharoah
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2017
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-017-0852-3

Other articles of this Issue 1/2017

Breast Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine