Skip to main content
Top
Published in: Brain Structure and Function 4/2014

01-07-2014 | Original Article

An MRI atlas of the mouse basal ganglia

Authors: Jeremy F. P. Ullmann, Charles Watson, Andrew L. Janke, Nyoman D. Kurniawan, George Paxinos, David C. Reutens

Published in: Brain Structure and Function | Issue 4/2014

Login to get access

Abstract

The basal ganglia are a group of subpallial nuclei that play an important role in motor, emotional, and cognitive functions. Morphological changes and disrupted afferent/efferent connections in the basal ganglia have been associated with a variety of neurological disorders including psychiatric and movement disorders. While high-resolution magnetic resonance imaging has been used to characterize changes in brain structure in mouse models of these disorders, no systematic method for segmentation of the C57BL/6 J mouse basal ganglia exists. In this study we have used high-resolution MR images of ex vivo C57BL/6 J mouse brain to create a detailed protocol for segmenting the basal ganglia. We created a three-dimensional minimum deformation atlas, which includes the segmentation of 35 striatal, pallidal, and basal ganglia-related structures. In addition, we provide mean volumes, mean T2 contrast intensities and mean FA and ADC values for each structure. This MR atlas is available for download, and enables researchers to perform automated segmentation in genetic models of basal ganglia disorders.
Appendix
Available only for authorised users
Literature
go back to reference Ahsan RL, Allom R, Gousias IS, Habib H, Turkheimer FE, Free S, Lemieux L, Myers R, Duncan JS, Brooks DJ, Koepp MJ, Hammers A (2007) Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. NeuroImage 38(2):261–270PubMedCrossRef Ahsan RL, Allom R, Gousias IS, Habib H, Turkheimer FE, Free S, Lemieux L, Myers R, Duncan JS, Brooks DJ, Koepp MJ, Hammers A (2007) Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. NeuroImage 38(2):261–270PubMedCrossRef
go back to reference Antonsen BT, Jiang Y, Veraart J, Qu H, Nguyen HP, Sijbers J, von Horsten S, Johnson GA, Leergaard TB (2013) Altered diffusion tensor imaging measurements in aged transgenic Huntington disease rats. Brain Struct Funct 218:767–778PubMedCentralPubMedCrossRef Antonsen BT, Jiang Y, Veraart J, Qu H, Nguyen HP, Sijbers J, von Horsten S, Johnson GA, Leergaard TB (2013) Altered diffusion tensor imaging measurements in aged transgenic Huntington disease rats. Brain Struct Funct 218:767–778PubMedCentralPubMedCrossRef
go back to reference Bear M, Conners B, Paradiso M (2007) Neuroscience. Exploring the brain, 3rd edn. Lippincott Williams & Wilkins, Baltimore Bear M, Conners B, Paradiso M (2007) Neuroscience. Exploring the brain, 3rd edn. Lippincott Williams & Wilkins, Baltimore
go back to reference Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, Hahn T, Gendelman HE, Mosley RL (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26(3):590–596PubMedCentralPubMedCrossRef Boska MD, Hasan KM, Kibuule D, Banerjee R, McIntyre E, Nelson JA, Hahn T, Gendelman HE, Mosley RL (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26(3):590–596PubMedCentralPubMedCrossRef
go back to reference Brodal P (2004) The central nervous system, 4th edn. Oxford University Press, New York Brodal P (2004) The central nervous system, 4th edn. Oxford University Press, New York
go back to reference Capecchi MR (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet 5(3):70–76PubMedCrossRef Capecchi MR (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet 5(3):70–76PubMedCrossRef
go back to reference Carroll JB, Lerch JP, Franciosi S, Spreeuw A, Bissada N, Henkelman RM, Hayden MR (2011) Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis 43(1):257–265PubMedCrossRef Carroll JB, Lerch JP, Franciosi S, Spreeuw A, Bissada N, Henkelman RM, Hayden MR (2011) Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis 43(1):257–265PubMedCrossRef
go back to reference Cepeda-Prado E, Popp S, Khan U, Stefanov D, Rodriguez J, Menalled LB, Dow-Edwards D, Small SA, Moreno H (2012) R6/2 Huntington’s disease mice develop early and progressive abnormal brain metabolism and seizures. J Neurosci 32(19):6456–6467PubMedCentralPubMedCrossRef Cepeda-Prado E, Popp S, Khan U, Stefanov D, Rodriguez J, Menalled LB, Dow-Edwards D, Small SA, Moreno H (2012) R6/2 Huntington’s disease mice develop early and progressive abnormal brain metabolism and seizures. J Neurosci 32(19):6456–6467PubMedCentralPubMedCrossRef
go back to reference Chakravarty MM, Bedell BJ, Zehntner SP, Evans AC, Collins DL (2008) Three-dimensional reconstruction of serial histological mouse brain sections. In: 2008 IEEE international symposium on biomedical imaging: from nano to macro, vol 1–4, pp 987–990 Chakravarty MM, Bedell BJ, Zehntner SP, Evans AC, Collins DL (2008) Three-dimensional reconstruction of serial histological mouse brain sections. In: 2008 IEEE international symposium on biomedical imaging: from nano to macro, vol 1–4, pp 987–990
go back to reference Cheng Y, Peng Q, Hou Z, Aggarwal M, Zhang J, Mori S, Ross CA, Duan W (2011) Structural MRI detects progressive regional brain atrophy and neuroprotective effects in N171–82Q Huntington’s disease mouse model. Neuroimage 56(3):1027–1034PubMedCentralPubMedCrossRef Cheng Y, Peng Q, Hou Z, Aggarwal M, Zhang J, Mori S, Ross CA, Duan W (2011) Structural MRI detects progressive regional brain atrophy and neuroprotective effects in N171–82Q Huntington’s disease mouse model. Neuroimage 56(3):1027–1034PubMedCentralPubMedCrossRef
go back to reference Choe AS, Gao YR, Li X, Compton KB, Stepniewska I, Anderson AW (2011) Accuracy of image registration between MRI and light microscopy in the ex vivo brain. Magn Reson Imaging 29(5):683–692PubMedCentralPubMedCrossRef Choe AS, Gao YR, Li X, Compton KB, Stepniewska I, Anderson AW (2011) Accuracy of image registration between MRI and light microscopy in the ex vivo brain. Magn Reson Imaging 29(5):683–692PubMedCentralPubMedCrossRef
go back to reference Chuang N, Mori S, Yamamoto A, Jiang H, Ye X, Xu X, Richards LJ, Nathans J, Miller MI, Toga AW, Sidman RL, Zhang J (2011) An MRI-based atlas and database of the developing mouse brain. NeuroImage 54(1):80–89PubMedCentralPubMedCrossRef Chuang N, Mori S, Yamamoto A, Jiang H, Ye X, Xu X, Richards LJ, Nathans J, Miller MI, Toga AW, Sidman RL, Zhang J (2011) An MRI-based atlas and database of the developing mouse brain. NeuroImage 54(1):80–89PubMedCentralPubMedCrossRef
go back to reference Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3(3):190–208CrossRef Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3(3):190–208CrossRef
go back to reference Cyr M, Caron MG, Johnson GA, Laakso A (2005) Magnetic resonance imaging at microscopic resolution reveals subtle morphological changes in a mouse model of dopaminergic hyperfunction. NeuroImage 26(1):83–90PubMedCrossRef Cyr M, Caron MG, Johnson GA, Laakso A (2005) Magnetic resonance imaging at microscopic resolution reveals subtle morphological changes in a mouse model of dopaminergic hyperfunction. NeuroImage 26(1):83–90PubMedCrossRef
go back to reference Deogaonkar M, Heers M, Mahajan S, Brummer M, Subramanian T (2005) Method of construction of a MRI-based tabular database of 3D stereotaxic co-ordinates for individual structures in the basal ganglia of Macaca mulatta. J Neurosci Meth 149(2):154–163CrossRef Deogaonkar M, Heers M, Mahajan S, Brummer M, Subramanian T (2005) Method of construction of a MRI-based tabular database of 3D stereotaxic co-ordinates for individual structures in the basal ganglia of Macaca mulatta. J Neurosci Meth 149(2):154–163CrossRef
go back to reference Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O (2008) Zebrafish as a new animal model for movement disorders. J Neurochem 106(5):1991–1997PubMedCrossRef Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O (2008) Zebrafish as a new animal model for movement disorders. J Neurochem 106(5):1991–1997PubMedCrossRef
go back to reference Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327PubMedCentralPubMedCrossRef Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327PubMedCentralPubMedCrossRef
go back to reference Francois C, Yelnik J, Percheron G (1996) A stereotaxic atlas of the basal ganglia in macaques. Brain Res Bull 41(3):151–158PubMedCrossRef Francois C, Yelnik J, Percheron G (1996) A stereotaxic atlas of the basal ganglia in macaques. Brain Res Bull 41(3):151–158PubMedCrossRef
go back to reference Gerfen CR (2004) Basal Ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego, pp 455–508 Gerfen CR (2004) Basal Ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego, pp 455–508
go back to reference Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum components of the motor system? Trends Neurosci 5(3):83–87CrossRef Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum components of the motor system? Trends Neurosci 5(3):83–87CrossRef
go back to reference Hertel N, Krishna K, Nuernberger M, Redies C (2008) A cadherin-based code for the divisions of the mouse basal ganglia. J Comp Neurol 508(4):511–528PubMedCrossRef Hertel N, Krishna K, Nuernberger M, Redies C (2008) A cadherin-based code for the divisions of the mouse basal ganglia. J Comp Neurol 508(4):511–528PubMedCrossRef
go back to reference Janke AL, Ullmann JFP, Kurniawan ND, Paxinos G, Keller M, Yang Z, Richards K, Egan G, Petrou S, Galloway G, Reutens D (2012) 15 μm average mouse models in Waxholm space from 16.4T 30 μm images. In: 20th annual ISMRM scientific meeting and exhibition, Melbourne, Australia Janke AL, Ullmann JFP, Kurniawan ND, Paxinos G, Keller M, Yang Z, Richards K, Egan G, Petrou S, Galloway G, Reutens D (2012) 15 μm average mouse models in Waxholm space from 16.4T 30 μm images. In: 20th annual ISMRM scientific meeting and exhibition, Melbourne, Australia
go back to reference Johnson GA, Badea A, Brandenburg J, Cofer G, Fubara B, Liu S, Nissanov J (2010) Waxholm space: an image-based reference for coordinating mouse brain research. NeuroImage 53(2):365–372PubMedCentralPubMedCrossRef Johnson GA, Badea A, Brandenburg J, Cofer G, Fubara B, Liu S, Nissanov J (2010) Waxholm space: an image-based reference for coordinating mouse brain research. NeuroImage 53(2):365–372PubMedCentralPubMedCrossRef
go back to reference Johnson GA, Calabrese E, Badea A, Paxinos G, Watson C (2012) A multidimensional magnetic resonance histology atlas of the Wistar rat brain. NeuroImage 62(3):1848–1856PubMedCentralPubMedCrossRef Johnson GA, Calabrese E, Badea A, Paxinos G, Watson C (2012) A multidimensional magnetic resonance histology atlas of the Wistar rat brain. NeuroImage 62(3):1848–1856PubMedCentralPubMedCrossRef
go back to reference Kerbler GM, Hamlin AS, Pannek K, Kurniawan ND, Keller MD, Rose SE, Coulson EJ (2012) Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model. NeuroImage 66C:133–141PubMed Kerbler GM, Hamlin AS, Pannek K, Kurniawan ND, Keller MD, Rose SE, Coulson EJ (2012) Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model. NeuroImage 66C:133–141PubMed
go back to reference Lanciego JL, Vazquez A (2012) The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct Funct 217(2):613–666PubMedCentralPubMedCrossRef Lanciego JL, Vazquez A (2012) The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct Funct 217(2):613–666PubMedCentralPubMedCrossRef
go back to reference Lerch JP, Carroll JB, Dorr A, Spring S, Evans AC, Hayden MR, Sled JG, Henkelman RM (2008a) Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. NeuroImage 41(2):243–251PubMedCrossRef Lerch JP, Carroll JB, Dorr A, Spring S, Evans AC, Hayden MR, Sled JG, Henkelman RM (2008a) Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. NeuroImage 41(2):243–251PubMedCrossRef
go back to reference Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, Henkelman RM (2008b) Automated deformation analysis in the YAC128 Huntington disease mouse model. NeuroImage 39(1):32–39PubMedCrossRef Lerch JP, Carroll JB, Spring S, Bertram LN, Schwab C, Hayden MR, Henkelman RM (2008b) Automated deformation analysis in the YAC128 Huntington disease mouse model. NeuroImage 39(1):32–39PubMedCrossRef
go back to reference MacKenzie-Graham A, Boline J, Toga AW (2007) Brain atlases and neuroanatomic imaging. Methods Mol Biol 401:183–194PubMedCrossRef MacKenzie-Graham A, Boline J, Toga AW (2007) Brain atlases and neuroanatomic imaging. Methods Mol Biol 401:183–194PubMedCrossRef
go back to reference Martinez-Garcia G, Novejarque A, Gutierrez-Castellanos N, Lanuza E (2012) Piriform cortex and amygdala. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system, vol 1. Elsevier Academic Press, San Diego, pp 140–172CrossRef Martinez-Garcia G, Novejarque A, Gutierrez-Castellanos N, Lanuza E (2012) Piriform cortex and amygdala. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system, vol 1. Elsevier Academic Press, San Diego, pp 140–172CrossRef
go back to reference Medina L, Abellan A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system, vol 1. Elsevier Academic Press, San Diego, pp 173–220CrossRef Medina L, Abellan A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system, vol 1. Elsevier Academic Press, San Diego, pp 173–220CrossRef
go back to reference Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28 k. J Comp Neurol 365(4):628–639PubMedCrossRef Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28 k. J Comp Neurol 365(4):628–639PubMedCrossRef
go back to reference Oorschot DE (2010) Cell types in the different nuclei of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier Inc., San Diego, pp 63–74CrossRef Oorschot DE (2010) Cell types in the different nuclei of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier Inc., San Diego, pp 63–74CrossRef
go back to reference Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40(1):46–57PubMedCrossRef Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40(1):46–57PubMedCrossRef
go back to reference Paxinos G, Franklin K (2013) The mouse brain in stereotaxic coordinates, vol 4. Academic Press, San Diego Paxinos G, Franklin K (2013) The mouse brain in stereotaxic coordinates, vol 4. Academic Press, San Diego
go back to reference Paxinos G, Watson C, Carrive P, Kirkcaldie MT, Ashwell K (2009) Chemoarchitectonic atlas of the rat brain. Elsevier Academic Press, San Diego Paxinos G, Watson C, Carrive P, Kirkcaldie MT, Ashwell K (2009) Chemoarchitectonic atlas of the rat brain. Elsevier Academic Press, San Diego
go back to reference Pelled G, Bergman H, Ben-Hur T, Goelman G (2007) Manganese-enhanced MRI in a rat model of Parkinson’s disease. J Magn Reson Imaging 26(4):863–870PubMedCrossRef Pelled G, Bergman H, Ben-Hur T, Goelman G (2007) Manganese-enhanced MRI in a rat model of Parkinson’s disease. J Magn Reson Imaging 26(4):863–870PubMedCrossRef
go back to reference Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates. An atlas featuring neuromeres and mammalian homologies. Elsevier Academic Press, San Diego Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates. An atlas featuring neuromeres and mammalian homologies. Elsevier Academic Press, San Diego
go back to reference Puelles E, Martinez-de-la-Torre M, Watson C, Puelles L (2012) Midbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system, vol 1. Elsevier Academic Press, San Diego, pp 337–359CrossRef Puelles E, Martinez-de-la-Torre M, Watson C, Puelles L (2012) Midbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system, vol 1. Elsevier Academic Press, San Diego, pp 337–359CrossRef
go back to reference Sadikot AF, Chakravarty MM, Bertrand G, Rymar VV, Al-Subaie F, Collins DL (2011) Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus. Front Syst Neurosci 5:71PubMedCentralPubMedCrossRef Sadikot AF, Chakravarty MM, Bertrand G, Rymar VV, Al-Subaie F, Collins DL (2011) Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus. Front Syst Neurosci 5:71PubMedCentralPubMedCrossRef
go back to reference Saleem K, Logothetis N (2007) A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego Saleem K, Logothetis N (2007) A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego
go back to reference Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2009a) Use of magnetic resonance imaging for anatomical phenotyping of the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 33(1):12–19PubMedCrossRef Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2009a) Use of magnetic resonance imaging for anatomical phenotyping of the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 33(1):12–19PubMedCrossRef
go back to reference Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2009b) Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis 33(1):20–27PubMedCrossRef Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA (2009b) Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis 33(1):20–27PubMedCrossRef
go back to reference Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM (2004) Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 15(3):640–647PubMedCrossRef Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM (2004) Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 15(3):640–647PubMedCrossRef
go back to reference Soria G, Aguilar E, Tudela R, Mullol J, Planas AM, Marin C (2011) In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-hydroxydopamine rat model. Eur J Neurosci 33(8):1551–1560PubMedCrossRef Soria G, Aguilar E, Tudela R, Mullol J, Planas AM, Marin C (2011) In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-hydroxydopamine rat model. Eur J Neurosci 33(8):1551–1560PubMedCrossRef
go back to reference Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886(1–2):113–164PubMedCrossRef Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886(1–2):113–164PubMedCrossRef
go back to reference Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4):1459–1472PubMedCrossRef Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4):1459–1472PubMedCrossRef
go back to reference Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Tech 22(1):53–66CrossRef Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Tech 22(1):53–66CrossRef
go back to reference Ullmann JF, Keller MD, Watson C, Janke AL, Kurniawan ND, Yang Z, Richards K, Paxinos G, Egan GF, Petrou S, Bartlett P, Galloway GJ, Reutens DC (2012) Segmentation of the C57BL/6 J mouse cerebellum in magnetic resonance images. NeuroImage 62(3):1408–1414PubMedCrossRef Ullmann JF, Keller MD, Watson C, Janke AL, Kurniawan ND, Yang Z, Richards K, Paxinos G, Egan GF, Petrou S, Bartlett P, Galloway GJ, Reutens DC (2012) Segmentation of the C57BL/6 J mouse cerebellum in magnetic resonance images. NeuroImage 62(3):1408–1414PubMedCrossRef
go back to reference Watson C, Paxinos G (2010) Chemoarchitectonic atlas of the mouse brain. Elsevier Academic Press, San Diego Watson C, Paxinos G (2010) Chemoarchitectonic atlas of the mouse brain. Elsevier Academic Press, San Diego
go back to reference Watson C, Kirkcaldie MT, Paxinos G (2010) The brain: an introduction to functional neuroanatomy. Academic Press, San Diego Watson C, Kirkcaldie MT, Paxinos G (2010) The brain: an introduction to functional neuroanatomy. Academic Press, San Diego
go back to reference Yang SH, Chan AW (2011) Transgenic animal models of Huntington’s disease. Curr Top Behav Neurosci 7:61–85PubMedCrossRef Yang SH, Chan AW (2011) Transgenic animal models of Huntington’s disease. Curr Top Behav Neurosci 7:61–85PubMedCrossRef
go back to reference Yang Z, Richards K, Kurniawan ND, Petrou S, Reutens DC (2012) MRI-guided volume reconstruction of mouse brain from histological sections. J Neurosci Meth 211(2):210–217CrossRef Yang Z, Richards K, Kurniawan ND, Petrou S, Reutens DC (2012) MRI-guided volume reconstruction of mouse brain from histological sections. J Neurosci Meth 211(2):210–217CrossRef
go back to reference Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tande D, Karachi C, Ayache N, Cornu P, Agid Y (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data. NeuroImage 34(2):618–638PubMedCrossRef Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tande D, Karachi C, Ayache N, Cornu P, Agid Y (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data. NeuroImage 34(2):618–638PubMedCrossRef
go back to reference Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50(4):751–767PubMedCrossRef Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50(4):751–767PubMedCrossRef
go back to reference Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PCM, Mori S (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. NeuroImage 20(3):1639–1648PubMedCrossRef Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PCM, Mori S (2003) Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. NeuroImage 20(3):1639–1648PubMedCrossRef
go back to reference Zhang JY, Peng Q, Li Q, Jahanshad N, Hou ZP, Jiang ML, Masuda N, Langbehn DR, Miller MI, Mori S, Ross CA, Duan WZ (2010) Longitudinal characterization of brain atrophy of a Huntington’s disease mouse model by automated morphological analyses of magnetic resonance images. Neuroimage 49(3):2340–2351PubMedCentralPubMedCrossRef Zhang JY, Peng Q, Li Q, Jahanshad N, Hou ZP, Jiang ML, Masuda N, Langbehn DR, Miller MI, Mori S, Ross CA, Duan WZ (2010) Longitudinal characterization of brain atrophy of a Huntington’s disease mouse model by automated morphological analyses of magnetic resonance images. Neuroimage 49(3):2340–2351PubMedCentralPubMedCrossRef
Metadata
Title
An MRI atlas of the mouse basal ganglia
Authors
Jeremy F. P. Ullmann
Charles Watson
Andrew L. Janke
Nyoman D. Kurniawan
George Paxinos
David C. Reutens
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0572-0

Other articles of this Issue 4/2014

Brain Structure and Function 4/2014 Go to the issue