Skip to main content
Top
Published in: Breast Cancer Research 3/2014

Open Access 01-06-2014 | Research article

An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer

Authors: Misako Sato, Mitsutaka Kadota, Binwu Tang, Howard H Yang, Yu-an Yang, Mengge Shan, Jia Weng, Michael A Welsh, Kathleen C Flanders, Yoshiko Nagano, Aleksandra M Michalowski, Robert J Clifford, Maxwell P Lee, Lalage M Wakefield

Published in: Breast Cancer Research | Issue 3/2014

Login to get access

Abstract

Introduction

Transforming growth factor-βs (TGF-βs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-β antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-β are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses.

Methods

Using a breast cancer progression model that exemplifies the dual role of TGF-β, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-β-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts.

Results

TGF-β-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-β action. An in vivo-weighted TGF-β/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-β/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression.

Conclusions

Tumor-suppressive effects of TGF-β persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-β antagonists.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reis-Filho JS, Weigelt B, Fumagalli D, Sotiriou C: Molecular profiling: moving away from tumor philately. Sci Transl Med. 2010, 2: ps43-CrossRef Reis-Filho JS, Weigelt B, Fumagalli D, Sotiriou C: Molecular profiling: moving away from tumor philately. Sci Transl Med. 2010, 2: ps43-CrossRef
2.
go back to reference Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, Datto MB, Kelley M, Mathey-Prevot B, Potti A, Nevins JR: A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A. 2010, 107: 6994-6999.CrossRefPubMedPubMedCentral Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, Datto MB, Kelley M, Mathey-Prevot B, Potti A, Nevins JR: A pathway-based classification of human breast cancer. Proc Natl Acad Sci U S A. 2010, 107: 6994-6999.CrossRefPubMedPubMedCentral
4.
go back to reference Ikushima H, Miyazono K: TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010, 10: 415-424.CrossRefPubMed Ikushima H, Miyazono K: TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010, 10: 415-424.CrossRefPubMed
5.
go back to reference Pardali K, Moustakas A: Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 2007, 1775: 21-62.PubMed Pardali K, Moustakas A: Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 2007, 1775: 21-62.PubMed
7.
go back to reference Glick AB, Weinberg WC, Wu IH, Quan W, Yuspa SH: Transforming growth factor β1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res. 1996, 56: 3645-3650.PubMed Glick AB, Weinberg WC, Wu IH, Quan W, Yuspa SH: Transforming growth factor β1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res. 1996, 56: 3645-3650.PubMed
8.
go back to reference Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A: Defects in TGF-β signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene. 2000, 19: 1698-1709.CrossRefPubMed Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A: Defects in TGF-β signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene. 2000, 19: 1698-1709.CrossRefPubMed
9.
go back to reference Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E: Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell. 2007, 12: 313-327.CrossRefPubMedPubMedCentral Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E: Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell. 2007, 12: 313-327.CrossRefPubMedPubMedCentral
10.
go back to reference Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K: Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 2009, 69: 8844-8852.CrossRefPubMed Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K: Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 2009, 69: 8844-8852.CrossRefPubMed
11.
go back to reference Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, Aakre M, Shyr Y, Moses HL: Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest. 2009, 119: 1571-1582.CrossRefPubMedPubMedCentral Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, Aakre M, Shyr Y, Moses HL: Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest. 2009, 119: 1571-1582.CrossRefPubMedPubMedCentral
12.
go back to reference Novitskiy SV, Pickup MW, Gorska AE, Owens P, Chytil A, Aakre M, Wu H, Shyr Y, Moses HL: TGF-β receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov. 2011, 1: 430-441.CrossRefPubMedPubMedCentral Novitskiy SV, Pickup MW, Gorska AE, Owens P, Chytil A, Aakre M, Wu H, Shyr Y, Moses HL: TGF-β receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov. 2011, 1: 430-441.CrossRefPubMedPubMedCentral
13.
go back to reference Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL: Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene. 2005, 24: 5053-5068.CrossRefPubMedPubMedCentral Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL: Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene. 2005, 24: 5053-5068.CrossRefPubMedPubMedCentral
14.
go back to reference Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J: Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 2000, 14: 2610-2622.CrossRefPubMedPubMedCentral Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J: Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 2000, 14: 2610-2622.CrossRefPubMedPubMedCentral
15.
go back to reference Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E: TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996, 10: 2462-2477.CrossRefPubMed Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E: TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996, 10: 2462-2477.CrossRefPubMed
16.
go back to reference Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK, Brugge JS: Cooperation of the ErbB2 receptor and transforming growth factor β in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci U S A. 2004, 101: 1257-1262.CrossRefPubMedPubMedCentral Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK, Brugge JS: Cooperation of the ErbB2 receptor and transforming growth factor β in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci U S A. 2004, 101: 1257-1262.CrossRefPubMedPubMedCentral
17.
go back to reference Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011, 145: 926-940.CrossRefPubMedPubMedCentral Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011, 145: 926-940.CrossRefPubMedPubMedCentral
18.
go back to reference Bruna A, Greenwood W, Le QJ, Teschendorff A, Miranda-Saavedra D, Rueda OM, Sandoval JL, Vidakovic AT, Saadi A, Pharoah P, Singl J, Caldas C: TGFβ induces the formation of tumour-initiating cells in claudin-low breast cancer. Nat Commun. 2012, 3: 1055-CrossRefPubMed Bruna A, Greenwood W, Le QJ, Teschendorff A, Miranda-Saavedra D, Rueda OM, Sandoval JL, Vidakovic AT, Saadi A, Pharoah P, Singl J, Caldas C: TGFβ induces the formation of tumour-initiating cells in claudin-low breast cancer. Nat Commun. 2012, 3: 1055-CrossRefPubMed
19.
go back to reference Gorelik L, Flavell RA: Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med. 2001, 7: 1118-1122.CrossRefPubMed Gorelik L, Flavell RA: Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med. 2001, 7: 1118-1122.CrossRefPubMed
20.
go back to reference Pardali E, ten Dijke P: Transforming growth factor-β signaling and tumor angiogenesis. Front Biosci. 2009, 14: 4848-4861.CrossRef Pardali E, ten Dijke P: Transforming growth factor-β signaling and tumor angiogenesis. Front Biosci. 2009, 14: 4848-4861.CrossRef
21.
go back to reference Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ: Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer. 2004, 90: 822-832.CrossRefPubMedPubMedCentral Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ: Tumour-derived TGF-β1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer. 2004, 90: 822-832.CrossRefPubMedPubMedCentral
23.
go back to reference Bierie B, Moses HL: Gain or loss of TGFβ signaling in mammary carcinoma cells can promote metastasis. Cell Cycle. 2009, 8: 3319-3327.CrossRefPubMed Bierie B, Moses HL: Gain or loss of TGFβ signaling in mammary carcinoma cells can promote metastasis. Cell Cycle. 2009, 8: 3319-3327.CrossRefPubMed
24.
go back to reference Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J: Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A. 2003, 100: 8430-8435.CrossRefPubMedPubMedCentral Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J: Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A. 2003, 100: 8430-8435.CrossRefPubMedPubMedCentral
25.
go back to reference Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM: TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest. 2003, 112: 1116-1124.CrossRefPubMedPubMedCentral Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM: TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest. 2003, 112: 1116-1124.CrossRefPubMedPubMedCentral
26.
go back to reference Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL: Transforming growth factor-β regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008, 68: 1809-1819.CrossRefPubMed Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL: Transforming growth factor-β regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008, 68: 1809-1819.CrossRefPubMed
27.
go back to reference Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, Muller WJ, Moses HL: Effect of conditional knockout of the type II TGF-β receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 2005, 65: 2296-2302.CrossRefPubMed Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, Muller WJ, Moses HL: Effect of conditional knockout of the type II TGF-β receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 2005, 65: 2296-2302.CrossRefPubMed
28.
go back to reference Kohn EA, Yang YA, Du Z, Nagano Y, Van Schyndle CM, Herrmann MA, Heldman M, Chen JQ, Stuelten CH, Flanders KC, Wakefield LM: Biological responses to TGF-β in the mammary epithelium show a complex dependency on Smad3 gene dosage with important implications for tumor progression. Mol Cancer Res. 2012, 10: 1389-1399.CrossRefPubMedPubMedCentral Kohn EA, Yang YA, Du Z, Nagano Y, Van Schyndle CM, Herrmann MA, Heldman M, Chen JQ, Stuelten CH, Flanders KC, Wakefield LM: Biological responses to TGF-β in the mammary epithelium show a complex dependency on Smad3 gene dosage with important implications for tumor progression. Mol Cancer Res. 2012, 10: 1389-1399.CrossRefPubMedPubMedCentral
29.
go back to reference Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikoskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, et al: The genomic landscapes of human breast and colorectal cancers. Science. 2007, 318: 1108-1113.CrossRefPubMed Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikoskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, et al: The genomic landscapes of human breast and colorectal cancers. Science. 2007, 318: 1108-1113.CrossRefPubMed
30.
go back to reference Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, Moses HL: Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res. 2004, 6: R215-R231.CrossRefPubMedPubMedCentral Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, Moses HL: Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res. 2004, 6: R215-R231.CrossRefPubMedPubMedCentral
31.
go back to reference Gobbi H, Dupont WD, Simpson JF, Plummer WD, Schuyler PA, Olson SJ, Arteaga CL, Page DL: Transforming growth factor-β and breast cancer risk in women with mammary epithelial hyperplasia. J Natl Cancer Inst. 1999, 91: 2096-2101.CrossRefPubMed Gobbi H, Dupont WD, Simpson JF, Plummer WD, Schuyler PA, Olson SJ, Arteaga CL, Page DL: Transforming growth factor-β and breast cancer risk in women with mammary epithelial hyperplasia. J Natl Cancer Inst. 1999, 91: 2096-2101.CrossRefPubMed
32.
go back to reference Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH, Pandiella A, Arteaga CL: Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol. 2008, 28: 5605-5620.CrossRefPubMedPubMedCentral Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH, Pandiella A, Arteaga CL: Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol. 2008, 28: 5605-5620.CrossRefPubMedPubMedCentral
33.
go back to reference Coulouarn C, Factor VM, Thorgeirsson SS: Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology. 2008, 47: 2059-2067.CrossRefPubMedPubMedCentral Coulouarn C, Factor VM, Thorgeirsson SS: Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology. 2008, 47: 2059-2067.CrossRefPubMedPubMedCentral
34.
go back to reference Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J: TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008, 133: 66-77.CrossRefPubMedPubMedCentral Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J: TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008, 133: 66-77.CrossRefPubMedPubMedCentral
35.
go back to reference Xu XL, Kapoun AM: Heterogeneous activation of the TGFβ pathway in glioblastomas identified by gene expression-based classification using TGFβ-responsive genes. J Transl Med. 2009, 7: 12-CrossRefPubMedPubMedCentral Xu XL, Kapoun AM: Heterogeneous activation of the TGFβ pathway in glioblastomas identified by gene expression-based classification using TGFβ-responsive genes. J Transl Med. 2009, 7: 12-CrossRefPubMedPubMedCentral
36.
go back to reference Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K: Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007, 11: 259-273.CrossRefPubMed Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, Halushka MK, Sukumar S, Parker LM, Anderson KS, Harris LN, Garber JE, Richardson AL, Schnitt SJ, Nikolsky Y, Gelman RS, Polyak K: Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007, 11: 259-273.CrossRefPubMed
37.
go back to reference Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR: Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat. 2001, 65: 101-110.CrossRefPubMed Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR: Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat. 2001, 65: 101-110.CrossRefPubMed
38.
go back to reference Strickland LB, Dawson PJ, Santner SJ, Miller FR: Progression of premalignant MCF10AT generates heterogeneous malignant variants with characteristic histologic types and immunohistochemical markers. Breast Cancer Res Treat. 2000, 64: 235-240.CrossRefPubMed Strickland LB, Dawson PJ, Santner SJ, Miller FR: Progression of premalignant MCF10AT generates heterogeneous malignant variants with characteristic histologic types and immunohistochemical markers. Breast Cancer Res Treat. 2000, 64: 235-240.CrossRefPubMed
39.
go back to reference Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50: 6075-6086.PubMed Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC: Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990, 50: 6075-6086.PubMed
40.
go back to reference Visscher DW, Nanjia-Makker P, Heppner G, Shekhar PV: Tamoxifen suppresses histologic progression to atypia and DCIS in MCFIOAT xenografts, a model of early human breast cancer. Breast Cancer Res Treat. 2001, 65: 41-47.CrossRefPubMed Visscher DW, Nanjia-Makker P, Heppner G, Shekhar PV: Tamoxifen suppresses histologic progression to atypia and DCIS in MCFIOAT xenografts, a model of early human breast cancer. Breast Cancer Res Treat. 2001, 65: 41-47.CrossRefPubMed
41.
go back to reference Shekhar PV, Chen ML, Werdell J, Heppner GH, Miller FR, Christman JK: Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT cells: a model for early breast cancer. Int J Oncol. 1998, 13: 907-915.PubMed Shekhar PV, Chen ML, Werdell J, Heppner GH, Miller FR, Christman JK: Transcriptional activation of functional endogenous estrogen receptor gene expression in MCF10AT cells: a model for early breast cancer. Int J Oncol. 1998, 13: 907-915.PubMed
42.
go back to reference Shekhar MP, Werdell J, Santner SJ, Pauley RJ, Tait L: Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res. 2001, 61: 1320-1326.PubMed Shekhar MP, Werdell J, Santner SJ, Pauley RJ, Tait L: Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res. 2001, 61: 1320-1326.PubMed
43.
go back to reference Shekhar MP, Nangia-Makker P, Wolman SR, Tait L, Heppner GH, Visscher DW: Direct action of estrogen on sequence of progression of human preneoplastic breast disease. Am J Pathol. 1998, 152: 1129-1132.PubMedPubMedCentral Shekhar MP, Nangia-Makker P, Wolman SR, Tait L, Heppner GH, Visscher DW: Direct action of estrogen on sequence of progression of human preneoplastic breast disease. Am J Pathol. 1998, 152: 1129-1132.PubMedPubMedCentral
44.
go back to reference Kadota M, Yang HH, Gomez B, Sato M, Clifford RJ, Meerzaman D, Dunn BK, Wakefield LM, Lee MP: Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One. 2010, 5: e9201-CrossRefPubMedPubMedCentral Kadota M, Yang HH, Gomez B, Sato M, Clifford RJ, Meerzaman D, Dunn BK, Wakefield LM, Lee MP: Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One. 2010, 5: e9201-CrossRefPubMedPubMedCentral
45.
go back to reference Michelucci A, Di CC, Lami A, Collecchi P, Caligo A, Decarli N, Leopizzi M, Aretini P, Bertacca G, Porta RP, Ricci S, Della Rocca C, Stanta G, Bevilacqua G, Cazzana A: PIK3CA in breast carcinoma: a mutational analysis of sporadic and hereditary cases. Diagn Mol Pathol. 2009, 18: 200-205.CrossRefPubMed Michelucci A, Di CC, Lami A, Collecchi P, Caligo A, Decarli N, Leopizzi M, Aretini P, Bertacca G, Porta RP, Ricci S, Della Rocca C, Stanta G, Bevilacqua G, Cazzana A: PIK3CA in breast carcinoma: a mutational analysis of sporadic and hereditary cases. Diagn Mol Pathol. 2009, 18: 200-205.CrossRefPubMed
46.
go back to reference Bild AH, Parker JS, Gustafson AM, Acharya CR, Hoadley KA, Anders C, Marcom PK, Carey LA, Potti A, Nevins JR, Perou CM: An integration of complementary strategies for gene-expression analysis to reveal novel therapeutic opportunities for breast cancer. Breast Cancer Res. 2009, 11: R55-CrossRefPubMedPubMedCentral Bild AH, Parker JS, Gustafson AM, Acharya CR, Hoadley KA, Anders C, Marcom PK, Carey LA, Potti A, Nevins JR, Perou CM: An integration of complementary strategies for gene-expression analysis to reveal novel therapeutic opportunities for breast cancer. Breast Cancer Res. 2009, 11: R55-CrossRefPubMedPubMedCentral
47.
go back to reference Kohn EA, Du Z, Sato M, Van Schyndle CM, Welsh MA, Yang YA, Stuelten CH, Tang B, Ju W, Bottinger EP, Wakefield LM: A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland. Breast Cancer Res. 2010, 12: R83-CrossRefPubMedPubMedCentral Kohn EA, Du Z, Sato M, Van Schyndle CM, Welsh MA, Yang YA, Stuelten CH, Tang B, Ju W, Bottinger EP, Wakefield LM: A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland. Breast Cancer Res. 2010, 12: R83-CrossRefPubMedPubMedCentral
48.
go back to reference Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, Jones PA: Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A. 2004, 101: 7357-7362.CrossRefPubMedPubMedCentral Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, Jones PA: Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A. 2004, 101: 7357-7362.CrossRefPubMedPubMedCentral
49.
go back to reference Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L: H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics. 2012, 13: 424-CrossRefPubMedPubMedCentral Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L: H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics. 2012, 13: 424-CrossRefPubMedPubMedCentral
50.
go back to reference Kadota M, Yang HH, Hu N, Wang C, Hu Y, Taylor PR, Buetow KH, Lee MP: Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome. PLoS Genet. 2007, 3: e81-CrossRefPubMedPubMedCentral Kadota M, Yang HH, Hu N, Wang C, Hu Y, Taylor PR, Buetow KH, Lee MP: Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome. PLoS Genet. 2007, 3: e81-CrossRefPubMedPubMedCentral
51.
go back to reference Nicol JW, Helt GA, Blanchard SG, Raja A, Loraine AE: The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics. 2009, 25: 2730-2731.CrossRefPubMedPubMedCentral Nicol JW, Helt GA, Blanchard SG, Raja A, Loraine AE: The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics. 2009, 25: 2730-2731.CrossRefPubMedPubMedCentral
53.
56.
58.
go back to reference van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsam D, Witteveen A, Glas A, Delahaye L, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002, 347: 1999-2009.CrossRefPubMed van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsam D, Witteveen A, Glas A, Delahaye L, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002, 347: 1999-2009.CrossRefPubMed
60.
go back to reference Venet D, Dumont JE, Detours V: Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol. 2011, 7: e1002240-CrossRefPubMedPubMedCentral Venet D, Dumont JE, Detours V: Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol. 2011, 7: e1002240-CrossRefPubMedPubMedCentral
61.
go back to reference Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H: Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics. 2005, 86: 127-141.CrossRefPubMed Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H: Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics. 2005, 86: 127-141.CrossRefPubMed
62.
go back to reference Lim E, Wu D, Pa B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK, Visvader JE: Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010, 12: R21-CrossRefPubMedPubMedCentral Lim E, Wu D, Pa B, Bouras T, Asselin-Labat ML, Vaillant F, Yagita H, Lindeman GJ, Smyth GK, Visvader JE: Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010, 12: R21-CrossRefPubMedPubMedCentral
63.
go back to reference Kim J, Villadsen R, Sorlie T, Fogh L, Gronlund SZ, Fridriksdottir AJ, Kuhn I, Rank F, Wielenga VT, Solvang H, Edwards PA, Borresen-Dale AL, Ronnov-Jessen L, Bissell MJ, Petersen OW: Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A. 2012, 109: 6124-6129.CrossRefPubMedPubMedCentral Kim J, Villadsen R, Sorlie T, Fogh L, Gronlund SZ, Fridriksdottir AJ, Kuhn I, Rank F, Wielenga VT, Solvang H, Edwards PA, Borresen-Dale AL, Ronnov-Jessen L, Bissell MJ, Petersen OW: Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A. 2012, 109: 6124-6129.CrossRefPubMedPubMedCentral
64.
go back to reference Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG: The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012, 150: 764-779.CrossRefPubMedPubMedCentral Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG: The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012, 150: 764-779.CrossRefPubMedPubMedCentral
65.
go back to reference Tang B, Yoo N, Vu M, Mamura M, Nam JS, Ooshima A, Du Z, Desprez PY, Anver MR, Michalowska AM, Shih J, Parks WT, Wakefield LM: Transforming growth factor-β can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res. 2007, 67: 8643-8652.CrossRefPubMedPubMedCentral Tang B, Yoo N, Vu M, Mamura M, Nam JS, Ooshima A, Du Z, Desprez PY, Anver MR, Michalowska AM, Shih J, Parks WT, Wakefield LM: Transforming growth factor-β can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res. 2007, 67: 8643-8652.CrossRefPubMedPubMedCentral
66.
go back to reference Schmierer B, Hill CS: TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007, 8: 970-982.CrossRefPubMed Schmierer B, Hill CS: TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007, 8: 970-982.CrossRefPubMed
67.
go back to reference Brown KA, Pietenpol JA, Moses HL: A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-β signaling. J Cell Biochem. 2007, 101: 9-33.CrossRefPubMed Brown KA, Pietenpol JA, Moses HL: A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-β signaling. J Cell Biochem. 2007, 101: 9-33.CrossRefPubMed
68.
go back to reference Matsuzaki K, Okazaki K: Transforming growth factor-β during carcinogenesis: the shift from epithelial to mesenchymal signaling. J Gastroenterol. 2006, 41: 295-303.CrossRefPubMed Matsuzaki K, Okazaki K: Transforming growth factor-β during carcinogenesis: the shift from epithelial to mesenchymal signaling. J Gastroenterol. 2006, 41: 295-303.CrossRefPubMed
69.
go back to reference Zhu S, Wang W, Clarke DC, Liu X: Activation of Mps1 promotes transforming growth factor-β-independent Smad signaling. J Biol Chem. 2007, 282: 18327-18338.CrossRefPubMed Zhu S, Wang W, Clarke DC, Liu X: Activation of Mps1 promotes transforming growth factor-β-independent Smad signaling. J Biol Chem. 2007, 282: 18327-18338.CrossRefPubMed
70.
go back to reference Lee BH, Chen W, Stippec S, Cobb MH: Biological cross-talk between WNK1 and the transforming growth factor β-Smad signaling pathway. J Biol Chem. 2007, 282: 17985-17996.CrossRefPubMed Lee BH, Chen W, Stippec S, Cobb MH: Biological cross-talk between WNK1 and the transforming growth factor β-Smad signaling pathway. J Biol Chem. 2007, 282: 17985-17996.CrossRefPubMed
71.
go back to reference Seong HA, Jung H, Ha H: Murine protein serine/threonine kinase 38 stimulates TGF-β signaling in a kinase-dependent manner via direct phosphorylation of Smad proteins. J Biol Chem. 2010, 285: 30959-30970.CrossRefPubMedPubMedCentral Seong HA, Jung H, Ha H: Murine protein serine/threonine kinase 38 stimulates TGF-β signaling in a kinase-dependent manner via direct phosphorylation of Smad proteins. J Biol Chem. 2010, 285: 30959-30970.CrossRefPubMedPubMedCentral
72.
go back to reference Chung AC, Zhang H, Kong YZ, Tan JJ, Huang XR, Kopp JB, Lan HY: Advanced glycation end-products induce tubular CTGF via TGF-β-independent Smad3 signaling. J Am Soc Nephrol. 2010, 21: 249-260.CrossRefPubMedPubMedCentral Chung AC, Zhang H, Kong YZ, Tan JJ, Huang XR, Kopp JB, Lan HY: Advanced glycation end-products induce tubular CTGF via TGF-β-independent Smad3 signaling. J Am Soc Nephrol. 2010, 21: 249-260.CrossRefPubMedPubMedCentral
73.
go back to reference Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, Imamura T, Miyazono K, Aburatani H: Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol Cell Biol. 2009, 29: 172-186.CrossRefPubMed Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, Imamura T, Miyazono K, Aburatani H: Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol Cell Biol. 2009, 29: 172-186.CrossRefPubMed
74.
go back to reference Mizutani A, Koinuma D, Tsutsumi S, Kamimura N, Morikawa M, Suzuki HI, Imamura T, Miyazono K, Aburatani H: Cell-type specific target selection by combinatorial binding of Smad2/3 and hepatocyte nuclear factor 4{alpha} in HepG2 cells. J Biol Chem. 2011, 286: 29848-29860.CrossRefPubMedPubMedCentral Mizutani A, Koinuma D, Tsutsumi S, Kamimura N, Morikawa M, Suzuki HI, Imamura T, Miyazono K, Aburatani H: Cell-type specific target selection by combinatorial binding of Smad2/3 and hepatocyte nuclear factor 4{alpha} in HepG2 cells. J Biol Chem. 2011, 286: 29848-29860.CrossRefPubMedPubMedCentral
75.
go back to reference Zhang Y, Handley D, Kaplan T, Yu H, Bais AS, Richards T, Pandit KV, Zeng Q, Benos PV, Friedman N, Eickelberg O, Kaminski N: High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells. PLoS One. 2011, 6: e20319-CrossRefPubMedPubMedCentral Zhang Y, Handley D, Kaplan T, Yu H, Bais AS, Richards T, Pandit KV, Zeng Q, Benos PV, Friedman N, Eickelberg O, Kaminski N: High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells. PLoS One. 2011, 6: e20319-CrossRefPubMedPubMedCentral
76.
go back to reference Zhang Y, Feng XH, Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature. 1998, 394: 909-913.CrossRefPubMed Zhang Y, Feng XH, Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature. 1998, 394: 909-913.CrossRefPubMed
77.
go back to reference Sundqvist A, Zieba A, Vasilaki E, Herrera HC, Soderberg O, Koinuma D, Miyazono K, Heldin CH, Landegren U, ten Dijke P, van Dam H: Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Oncogene. 2013, 32: 3606-3615.CrossRefPubMed Sundqvist A, Zieba A, Vasilaki E, Herrera HC, Soderberg O, Koinuma D, Miyazono K, Heldin CH, Landegren U, ten Dijke P, van Dam H: Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Oncogene. 2013, 32: 3606-3615.CrossRefPubMed
79.
go back to reference Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012, 486: 346-352.PubMedPubMedCentral Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012, 486: 346-352.PubMedPubMedCentral
81.
go back to reference Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Richardson AL, Schnitt SJ, Schmitt FC, Tan PH, Tse GM, Badve S, Ellis IO: Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010, 12: 207-PubMedPubMedCentral Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Richardson AL, Schnitt SJ, Schmitt FC, Tan PH, Tse GM, Badve S, Ellis IO: Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010, 12: 207-PubMedPubMedCentral
83.
go back to reference Vaught D, Brantley-Sieders DM, Chen J: Eph receptors in breast cancer: roles in tumor promotion and tumor suppression. Breast Cancer Res. 2008, 10: 217-CrossRefPubMedPubMedCentral Vaught D, Brantley-Sieders DM, Chen J: Eph receptors in breast cancer: roles in tumor promotion and tumor suppression. Breast Cancer Res. 2008, 10: 217-CrossRefPubMedPubMedCentral
84.
go back to reference Miao H, Wang B: EphA receptor signaling-complexity and emerging themes. Semin Cell Dev Biol. 2012, 23: 16-25.CrossRefPubMed Miao H, Wang B: EphA receptor signaling-complexity and emerging themes. Semin Cell Dev Biol. 2012, 23: 16-25.CrossRefPubMed
85.
go back to reference Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MW, Nephew KP, Huang TH, Jin VX: ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One. 2011, 6: e22606-CrossRefPubMedPubMedCentral Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MW, Nephew KP, Huang TH, Jin VX: ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One. 2011, 6: e22606-CrossRefPubMedPubMedCentral
86.
go back to reference Mullen AC, Orlando DA, Newman JJ, Loven J, Kumar RM, Bilodeau S, Reddy J, Guenther MG, Dekoter RP, Young RA: Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell. 2011, 147: 565-576.CrossRefPubMedPubMedCentral Mullen AC, Orlando DA, Newman JJ, Loven J, Kumar RM, Bilodeau S, Reddy J, Guenther MG, Dekoter RP, Young RA: Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell. 2011, 147: 565-576.CrossRefPubMedPubMedCentral
87.
go back to reference Kendrick H, Regan JL, Magnay FA, Grigoriadis A, Mitsopoulos C, Zvelebil M, Smalley MJ: Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics. 2008, 9: 591-CrossRefPubMedPubMedCentral Kendrick H, Regan JL, Magnay FA, Grigoriadis A, Mitsopoulos C, Zvelebil M, Smalley MJ: Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics. 2008, 9: 591-CrossRefPubMedPubMedCentral
88.
go back to reference Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH: Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am J Pathol. 2005, 167: 409-417.CrossRefPubMedPubMedCentral Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH: Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am J Pathol. 2005, 167: 409-417.CrossRefPubMedPubMedCentral
89.
go back to reference Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS, Mittal SK: Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther. 2004, 11: 757-766.CrossRefPubMed Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS, Mittal SK: Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther. 2004, 11: 757-766.CrossRefPubMed
90.
go back to reference Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, Coffman K, Jackson D, Bruckheimer E, Muraoka-Cook RS, Chen J: The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008, 118: 64-78.CrossRefPubMed Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, Coffman K, Jackson D, Bruckheimer E, Muraoka-Cook RS, Chen J: The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008, 118: 64-78.CrossRefPubMed
91.
go back to reference Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS: EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001, 61: 2301-2306.PubMed Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS: EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001, 61: 2301-2306.PubMed
92.
go back to reference Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J: Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res. 2006, 66: 10315-10324.CrossRefPubMed Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J: Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res. 2006, 66: 10315-10324.CrossRefPubMed
Metadata
Title
An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer
Authors
Misako Sato
Mitsutaka Kadota
Binwu Tang
Howard H Yang
Yu-an Yang
Mengge Shan
Jia Weng
Michael A Welsh
Kathleen C Flanders
Yoshiko Nagano
Aleksandra M Michalowski
Robert J Clifford
Maxwell P Lee
Lalage M Wakefield
Publication date
01-06-2014
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 3/2014
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3668

Other articles of this Issue 3/2014

Breast Cancer Research 3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine