Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2016

Open Access 01-12-2016 | Research article

An information model for computable cancer phenotypes

Authors: Harry Hochheiser, Melissa Castine, David Harris, Guergana Savova, Rebecca S. Jacobson

Published in: BMC Medical Informatics and Decision Making | Issue 1/2016

Login to get access

Abstract

Background

Standards, methods, and tools supporting the integration of clinical data and genomic information are an area of significant need and rapid growth in biomedical informatics. Integration of cancer clinical data and cancer genomic information poses unique challenges, because of the high volume and complexity of clinical data, as well as the heterogeneity and instability of cancer genome data when compared with germline data. Current information models of clinical and genomic data are not sufficiently expressive to represent individual observations and to aggregate those observations into longitudinal summaries over the course of cancer care. These models are acutely needed to support the development of systems and tools for generating the so called clinical “deep phenotype” of individual cancer patients, a process which remains almost entirely manual in cancer research and precision medicine.

Methods

Reviews of existing ontologies and interviews with cancer researchers were used to inform iterative development of a cancer phenotype information model. We translated a subset of the Fast Healthcare Interoperability Resources (FHIR) models into the OWL 2 Description Logic (DL) representation, and added extensions as needed for modeling cancer phenotypes with terms derived from the NCI Thesaurus. Models were validated with domain experts and evaluated against competency questions.

Results

The DeepPhe Information model represents cancer phenotype data at increasing levels of abstraction from mention level in clinical documents to summaries of key events and findings. We describe the model using breast cancer as an example, depicting methods to represent phenotypic features of cancers, tumors, treatment regimens, and specific biologic behaviors that span the entire course of a patient’s disease.

Conclusions

We present a multi-scale information model for representing individual document mentions, document level classifications, episodes along a disease course, and phenotype summarization, linking individual observations to high-level summaries in support of subsequent integration and analysis.
Literature
3.
go back to reference Xu J, Rasmussen LV, Shaw PL, Jiang G, Kiefer RC, Mo H, Pacheco JA, Speltz P, Zhu Q, Denny JC, et al. Review and evaluation of electronic health records-driven phenotype algorithm authoring tools for clinical and translational research. J Am Med Inform Assoc. 2015;22(6):ocv070. Xu J, Rasmussen LV, Shaw PL, Jiang G, Kiefer RC, Mo H, Pacheco JA, Speltz P, Zhu Q, Denny JC, et al. Review and evaluation of electronic health records-driven phenotype algorithm authoring tools for clinical and translational research. J Am Med Inform Assoc. 2015;22(6):ocv070.
4.
go back to reference Hiatt RA, Tai CG, Blayney DW, Deapen D, Hogarth M, Kizer KW, Lipscomb J, Malin J, Phillips SK, Santa J et al. Leveraging state cancer registries to measure and improve the quality of cancer care: a potential strategy for California and beyond. J Natl Cancer Inst 2015, 107 (5):djv047 Hiatt RA, Tai CG, Blayney DW, Deapen D, Hogarth M, Kizer KW, Lipscomb J, Malin J, Phillips SK, Santa J et al. Leveraging state cancer registries to measure and improve the quality of cancer care: a potential strategy for California and beyond. J Natl Cancer Inst 2015, 107 (5):djv047
5.
go back to reference Helfand B, Roehl K, Cooper P, McGuire B, Fitzgerald L, Cancel-Tassin G, Cornu J-N, Bauer S, Van Blarigan E, Chen X et al. Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Hum Genet. 2015;134(4):439–50. Helfand B, Roehl K, Cooper P, McGuire B, Fitzgerald L, Cancel-Tassin G, Cornu J-N, Bauer S, Van Blarigan E, Chen X et al. Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Hum Genet. 2015;134(4):439–50.
6.
go back to reference Krumm R, Semjonow A, Tio J, Duhme H, Bürkle T, Haier J, Dugas M, Breil B. The need for harmonized structured documentation and chances of secondary use—Results of a systematic analysis with automated form comparison for prostate and breast cancer. J Biomed Inform. 2014;51:86–99. Krumm R, Semjonow A, Tio J, Duhme H, Bürkle T, Haier J, Dugas M, Breil B. The need for harmonized structured documentation and chances of secondary use—Results of a systematic analysis with automated form comparison for prostate and breast cancer. J Biomed Inform. 2014;51:86–99.
8.
go back to reference Mo H, Thompson WK, Rasmussen LV, Pacheco JA, Jiang G, Kiefer R, Zhu Q, Xu J, Montague E, Carrell DS Xu J, Montague E, Carrell DS et al. Desiderata for computable representations of electronic health records-driven phenotype algorithms. J Am Med Inform Assoc. 2015;22(6):ocv112. Mo H, Thompson WK, Rasmussen LV, Pacheco JA, Jiang G, Kiefer R, Zhu Q, Xu J, Montague E, Carrell DS Xu J, Montague E, Carrell DS et al. Desiderata for computable representations of electronic health records-driven phenotype algorithms. J Am Med Inform Assoc. 2015;22(6):ocv112.
9.
go back to reference Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute CG, Kullo IJ, Li R et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc. 2013;20(e1):e147–54. Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V, Basford M, Chute CG, Kullo IJ, Li R et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc. 2013;20(e1):e147–54.
10.
go back to reference Rea S, Pathak J, Savova G, Oniki TA, Westberg L, Beebe CE, Tao C, Parker CG, Haug PJ, Huff SM et al. Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project. J Biomed Inform. 2012;45(4):763–71. Rea S, Pathak J, Savova G, Oniki TA, Westberg L, Beebe CE, Tao C, Parker CG, Haug PJ, Huff SM et al. Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project. J Biomed Inform. 2012;45(4):763–71.
11.
go back to reference Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR, Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics. 2010;26(9):1205–10. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR, Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics. 2010;26(9):1205–10.
12.
go back to reference Crowley RS, Castine M, Mitchell K, Chavan G, McSherry T, Feldman M: caTIES: a grid based system for coding and retrieval of surgical pathology reports and tissue specimens in support of translational research. J Am Med Inform Assoc 2010, 17 (3):253–264. Crowley RS, Castine M, Mitchell K, Chavan G, McSherry T, Feldman M: caTIES: a grid based system for coding and retrieval of surgical pathology reports and tissue specimens in support of translational research. J Am Med Inform Assoc 2010, 17 (3):253–264.
13.
go back to reference Jacobson RS, Becich MJ, Bollag RJ, Chavan G, Corrigan J, Dhir R, Feldman MD, Gaudioso C, Legowski E, Maihle NJ et al. A federated network for translational cancer research using clinical data and biospecimens. Cancer Res. 2015;75(24):5194–201. Jacobson RS, Becich MJ, Bollag RJ, Chavan G, Corrigan J, Dhir R, Feldman MD, Gaudioso C, Legowski E, Maihle NJ et al. A federated network for translational cancer research using clinical data and biospecimens. Cancer Res. 2015;75(24):5194–201.
14.
go back to reference Lin C, Dligach D, Miller TA, Bethard S, Savova GK: Multilayered temporal modeling for the clinical domain. J Am Med Inform Assoc 2015, Oct 31. [Epub ahead of print]. Lin C, Dligach D, Miller TA, Bethard S, Savova GK: Multilayered temporal modeling for the clinical domain. J Am Med Inform Assoc 2015, Oct 31. [Epub ahead of print].
15.
go back to reference Lin C, Miller T, Kho A, Bethard S, Dligach D, Pradhan S, Savova G: Descending-Path Convolution Kernel for Syntactic Structures. In: Assocation for Compuational Linguistics Conference. Baltimore, MD 2014. Lin C, Miller T, Kho A, Bethard S, Dligach D, Pradhan S, Savova G: Descending-Path Convolution Kernel for Syntactic Structures. In: Assocation for Compuational Linguistics Conference. Baltimore, MD 2014.
16.
go back to reference Dligach D, Bethard S, Becker L, Miller T, Savova GK. Discovering body site and severity modifiers in clinical texts. J Am Med Inform Assoc. 2014;21(3):448–54.CrossRefPubMed Dligach D, Bethard S, Becker L, Miller T, Savova GK. Discovering body site and severity modifiers in clinical texts. J Am Med Inform Assoc. 2014;21(3):448–54.CrossRefPubMed
17.
go back to reference Carrell DS, Halgrim S, Tran D-T, Buist DSM, Chubak J, Chapman WW, Savova G. Using Natural Language Processing to Improve Efficiency of Manual Chart Abstraction in Research: The Case of Breast Cancer Recurrence. Am J Epidemiol. 2014;179(6):749–58.CrossRefPubMedPubMedCentral Carrell DS, Halgrim S, Tran D-T, Buist DSM, Chubak J, Chapman WW, Savova G. Using Natural Language Processing to Improve Efficiency of Manual Chart Abstraction in Research: The Case of Breast Cancer Recurrence. Am J Epidemiol. 2014;179(6):749–58.CrossRefPubMedPubMedCentral
18.
go back to reference Albright D, Lanfranchi A, Fredriksen A, Styler WF, Warner C, Hwang JD, Choi JD, Dligach D, Nielsen RD, Martin J et. Towards comprehensive syntactic and semantic annotations of the clinical narrative. J Am Med Inform Assoc. 2013;20(5):922–30. Albright D, Lanfranchi A, Fredriksen A, Styler WF, Warner C, Hwang JD, Choi JD, Dligach D, Nielsen RD, Martin J et. Towards comprehensive syntactic and semantic annotations of the clinical narrative. J Am Med Inform Assoc. 2013;20(5):922–30.
19.
go back to reference Huang Z, Lu X, Duan H. On mining clinical pathway patterns from medical behaviors. Artif Intell Med. 2012;56(1):35–50.CrossRefPubMed Huang Z, Lu X, Duan H. On mining clinical pathway patterns from medical behaviors. Artif Intell Med. 2012;56(1):35–50.CrossRefPubMed
20.
go back to reference Savova GK, Olson JE, Murphy SP, Cafourek VL, Couch FJ, Goetz MP, Ingle JN, Suman VJ, Chute CG, Weinshilboum RM. Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record. J Am Med Inform Assoc. 2012;19(e1):e83–9. Savova GK, Olson JE, Murphy SP, Cafourek VL, Couch FJ, Goetz MP, Ingle JN, Suman VJ, Chute CG, Weinshilboum RM. Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record. J Am Med Inform Assoc. 2012;19(e1):e83–9.
21.
23.
go back to reference Cherry C, Zhu X, Martin J, de Bruijn B. À la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge. J Am Med Inform Assoc. 2013;20(5):843–8.CrossRefPubMedPubMedCentral Cherry C, Zhu X, Martin J, de Bruijn B. À la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge. J Am Med Inform Assoc. 2013;20(5):843–8.CrossRefPubMedPubMedCentral
24.
go back to reference Huff SM, Rocha RA, Bray BE, Warner HR, Haug PJ. An event model of medical information representation. J Am Med Inform Assoc: JAMIA. 1995;2(2):116–34.CrossRefPubMedPubMedCentral Huff SM, Rocha RA, Bray BE, Warner HR, Haug PJ. An event model of medical information representation. J Am Med Inform Assoc: JAMIA. 1995;2(2):116–34.CrossRefPubMedPubMedCentral
25.
go back to reference Tao C, Solbrig HR, Chute CG: CNTRO 2.0: A harmonized semantic web ontology for temporal relation inferencing in clinical narratives. AMIA Joint Summits on Translational Science Proceedings AMIA Summit on Translational Science 2011, 2011:64–68. Tao C, Solbrig HR, Chute CG: CNTRO 2.0: A harmonized semantic web ontology for temporal relation inferencing in clinical narratives. AMIA Joint Summits on Translational Science Proceedings AMIA Summit on Translational Science 2011, 2011:64–68.
26.
go back to reference Tao C, Wei W-Q, Solbrig HR, Savova G, Chute CG: CNTRO: A Semantic Web Ontology for temporal relation inferencing in clinical narratives. AMIA Annu Symp Proc 2010, 2010:787–791. Tao C, Wei W-Q, Solbrig HR, Savova G, Chute CG: CNTRO: A Semantic Web Ontology for temporal relation inferencing in clinical narratives. AMIA Annu Symp Proc 2010, 2010:787–791.
27.
go back to reference Bethard S, Derczynski L, Savova GK, Pustejovsky J, Verhagen M: SemEval-2015 Task 6: Clinical TempEval. . In: 9th International Workshop on Semantic Evaluation (SemEval 2015. Denver, Colorado; 2015. Bethard S, Derczynski L, Savova GK, Pustejovsky J, Verhagen M: SemEval-2015 Task 6: Clinical TempEval. . In: 9th International Workshop on Semantic Evaluation (SemEval 2015. Denver, Colorado; 2015.
28.
go back to reference Sun W, Rumshisky A, Uzuner O. Normalization of relative and incomplete temporal expressions in clinical narratives. J Am Med Inform Assoc: JAMIA. 2015;22(5):1001–8.CrossRefPubMedPubMedCentral Sun W, Rumshisky A, Uzuner O. Normalization of relative and incomplete temporal expressions in clinical narratives. J Am Med Inform Assoc: JAMIA. 2015;22(5):1001–8.CrossRefPubMedPubMedCentral
29.
go back to reference Defossez G, Rollet A, Dameron O, Ingrand P. Temporal representation of care trajectories of cancer patients using data from a regional information system: an application in breast cancer. BMC Med Inform Decis Mak. 2014;14(1):24.CrossRefPubMedPubMedCentral Defossez G, Rollet A, Dameron O, Ingrand P. Temporal representation of care trajectories of cancer patients using data from a regional information system: an application in breast cancer. BMC Med Inform Decis Mak. 2014;14(1):24.CrossRefPubMedPubMedCentral
30.
go back to reference Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25(11):1251–5. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25(11):1251–5.
31.
go back to reference Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu W-L, Wright LW. \NCI\ Thesaurus: A semantic model integrating cancer-related clinical and molecular information. J Biomed Inform. 2007;40(1):30–43.CrossRefPubMed Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu W-L, Wright LW. \NCI\ Thesaurus: A semantic model integrating cancer-related clinical and molecular information. J Biomed Inform. 2007;40(1):30–43.CrossRefPubMed
32.
go back to reference Komatsoulis GA, Warzel DB, Hartel FW, Shanbhag K, Chilukuri R, Fragoso G, de Coronado S, Reeves DM, Hadfield JB, Ludet C et al. caCORE version 3: Implementation of a model driven, service-oriented architecture for semantic interoperability. J Biomed Inform 2008, 41 (1):106–123. Komatsoulis GA, Warzel DB, Hartel FW, Shanbhag K, Chilukuri R, Fragoso G, de Coronado S, Reeves DM, Hadfield JB, Ludet C et al. caCORE version 3: Implementation of a model driven, service-oriented architecture for semantic interoperability. J Biomed Inform 2008, 41 (1):106–123.
33.
go back to reference Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GCM, Brown DL, Brudno M, Campbell J et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014;42(Database issue):D966–74. Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GCM, Brown DL, Brudno M, Campbell J et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014;42(Database issue):D966–74.
34.
go back to reference Schriml L, Mitraka E. The Disease Ontology: fostering interoperability between biological and clinical human disease-related data. Mamm Genome. 2015;26:584. doi:10.1007/s00335-015-9576-9. Schriml L, Mitraka E. The Disease Ontology: fostering interoperability between biological and clinical human disease-related data. Mamm Genome. 2015;26:584. doi:10.​1007/​s00335-015-9576-9.
35.
go back to reference Lin K-W, Tharp M, Conway M, Hsieh A, Ross M, Kim J, Kim H-E. Feasibility of using Clinical Element Models (CEM) to standardize phenotype variables in the database of Genotypes and Phenotypes (dbGaP). PLoS One. 2013;8(9):e76384. Lin K-W, Tharp M, Conway M, Hsieh A, Ross M, Kim J, Kim H-E. Feasibility of using Clinical Element Models (CEM) to standardize phenotype variables in the database of Genotypes and Phenotypes (dbGaP). PLoS One. 2013;8(9):e76384.
36.
go back to reference Oniki TA, Coyle JF, Parker CG, Huff SM. Lessons learned in detailed clinical modeling at Intermountain Healthcare. J Am Med Inform Assoc: JAMIA. 2014;21(6):1076–81.CrossRefPubMedPubMedCentral Oniki TA, Coyle JF, Parker CG, Huff SM. Lessons learned in detailed clinical modeling at Intermountain Healthcare. J Am Med Inform Assoc: JAMIA. 2014;21(6):1076–81.CrossRefPubMedPubMedCentral
37.
go back to reference Tao C, Jiang G, Oniki TA, Freimuth RR, Zhu Q, Sharma D, Pathak J, Huff SM, Chute CG. A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. J Am Med Inform Assoc : JAMIA. 2013;20(3):554–62. Tao C, Jiang G, Oniki TA, Freimuth RR, Zhu Q, Sharma D, Pathak J, Huff SM, Chute CG. A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. J Am Med Inform Assoc : JAMIA. 2013;20(3):554–62.
38.
go back to reference Wu ST, Kaggal VC, Dligach D, Masanz JJ, Chen P, Becker L, Chapman WW, Savova GK, Liu H, Chute CG. A common type system for clinical natural language processing. J Biomed Semantics. 2013;4(1):1. Wu ST, Kaggal VC, Dligach D, Masanz JJ, Chen P, Becker L, Chapman WW, Savova GK, Liu H, Chute CG. A common type system for clinical natural language processing. J Biomed Semantics. 2013;4(1):1.
39.
go back to reference Alterovitz G, Warner J, Zhang P, Chen Y, Ullman-Cullere M, Kreda D, Kohane IS. SMART on FHIR Genomics: Facilitating standardized clinico-genomic apps. J Am Med Inform Assoc. 2015;22(6):1173–8.PubMed Alterovitz G, Warner J, Zhang P, Chen Y, Ullman-Cullere M, Kreda D, Kohane IS. SMART on FHIR Genomics: Facilitating standardized clinico-genomic apps. J Am Med Inform Assoc. 2015;22(6):1173–8.PubMed
40.
go back to reference Jiang G, Solbrig HR, Kiefer R, Rasmussen LV, Mo H, Speltz P, Thompson WK, Denny JC, Chute CG, Pathak J. A standards-based semantic metadata repository to support EHR-driven phenotype authoring and execution. Stud Health Technol Inform. 2015;216:1098. Jiang G, Solbrig HR, Kiefer R, Rasmussen LV, Mo H, Speltz P, Thompson WK, Denny JC, Chute CG, Pathak J. A standards-based semantic metadata repository to support EHR-driven phenotype authoring and execution. Stud Health Technol Inform. 2015;216:1098.
41.
go back to reference Kasthurirathne SN, Mamlin B, Kumara H, Grieve G, Biondich P. Enabling better interoperability for healthcare: lessons in developing a standards based application programing interface for electronic medical record systems. J Med Syst. 2015;39(11):182.CrossRefPubMed Kasthurirathne SN, Mamlin B, Kumara H, Grieve G, Biondich P. Enabling better interoperability for healthcare: lessons in developing a standards based application programing interface for electronic medical record systems. J Med Syst. 2015;39(11):182.CrossRefPubMed
42.
go back to reference Moreno-Conde A, Moner D, da Cruz WD, Santos MR, Maldonado M, Robles M, Kalra D. Clinical information modeling processes for semantic interoperability of electronic health records: systematic review and inductive analysis. J Am Med Inform Assoc : JAMIA. 2015;22(4):925–34.CrossRefPubMed Moreno-Conde A, Moner D, da Cruz WD, Santos MR, Maldonado M, Robles M, Kalra D. Clinical information modeling processes for semantic interoperability of electronic health records: systematic review and inductive analysis. J Am Med Inform Assoc : JAMIA. 2015;22(4):925–34.CrossRefPubMed
43.
go back to reference Tobias J, Chilukuri R, Komatsoulis G, Mohanty S, Sioutos N, Warzel DB, Wright LW, Crowley RS. CAP cancer protocols-a case study of caCORE based data standards implementation to integrate with the Cancer Biomedical Informatics Grid. BMC Med Inform Decis Mak. 2006;6:25.CrossRefPubMedPubMedCentral Tobias J, Chilukuri R, Komatsoulis G, Mohanty S, Sioutos N, Warzel DB, Wright LW, Crowley RS. CAP cancer protocols-a case study of caCORE based data standards implementation to integrate with the Cancer Biomedical Informatics Grid. BMC Med Inform Decis Mak. 2006;6:25.CrossRefPubMedPubMedCentral
44.
go back to reference Gkoutos GV, Mungall C, Dolken S, Ashburner M, Lewis S, Hancock J, Schofield P, Kohler S, Robinson PN: Entity/quality-based logical definitions for the human skeletal phenome using PATO. Conf Proc IEEE Eng Med Biol Soc 2009, 2009:7069–7072. Gkoutos GV, Mungall C, Dolken S, Ashburner M, Lewis S, Hancock J, Schofield P, Kohler S, Robinson PN: Entity/quality-based logical definitions for the human skeletal phenome using PATO. Conf Proc IEEE Eng Med Biol Soc 2009, 2009:7069–7072.
45.
go back to reference Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.
46.
go back to reference Min H, Manion FJ, Goralczyk E, Wong Y-N, Ross E, Beck JR. Integration of prostate cancer clinical data using an ontology. J Biomed Inform. 2009;42(6):1035–45.CrossRefPubMedPubMedCentral Min H, Manion FJ, Goralczyk E, Wong Y-N, Ross E, Beck JR. Integration of prostate cancer clinical data using an ontology. J Biomed Inform. 2009;42(6):1035–45.CrossRefPubMedPubMedCentral
47.
go back to reference Sojic A, Kutz O: Open biomedical pluralism: formalising knowledge about breast cancer phenotypes. Journal of Biomedical Semantics 2012, 3 Suppl 2 (Suppl 2):S3. Sojic A, Kutz O: Open biomedical pluralism: formalising knowledge about breast cancer phenotypes. Journal of Biomedical Semantics 2012, 3 Suppl 2 (Suppl 2):S3.
49.
go back to reference Tao C, Parker CG, Oniki TA, Pathak J, Huff SM, Chute CG. An OWL meta-ontology for representing the Clinical Element Model. AMIA Annu Symp Proc. 2011:1372–1381. Tao C, Parker CG, Oniki TA, Pathak J, Huff SM, Chute CG. An OWL meta-ontology for representing the Clinical Element Model. AMIA Annu Symp Proc. 2011:1372–1381.
52.
go back to reference Beyer H, Holtzblatt K: Contextual Design: Defining Customer-Centered Systems San Francisco: Morgan Kaufman; 1998. Beyer H, Holtzblatt K: Contextual Design: Defining Customer-Centered Systems San Francisco: Morgan Kaufman; 1998.
53.
go back to reference Lazar J, Feng J, Hochheiser H. Research Methods in Human-Computer Interaction. London: Wiley; 2009. Lazar J, Feng J, Hochheiser H. Research Methods in Human-Computer Interaction. London: Wiley; 2009.
54.
go back to reference Allen JF. Maintaining knowledge about temporal intervals. Commun ACM. 1983;26(11):832–43.CrossRef Allen JF. Maintaining knowledge about temporal intervals. Commun ACM. 1983;26(11):832–43.CrossRef
57.
go back to reference Tsetytlin E, Mitchell K, Legowski E, Corrigan J, Chavali G, Jacobson RS: NOBLE – Flexible concept recognition for large-scale biomedical natural language processing. BMC Bioinformatics, submitted. Tsetytlin E, Mitchell K, Legowski E, Corrigan J, Chavali G, Jacobson RS: NOBLE – Flexible concept recognition for large-scale biomedical natural language processing. BMC Bioinformatics, submitted.
58.
go back to reference SWRL: A Semantic Web Rule Language Combining OWL and RuleML SWRL: A Semantic Web Rule Language Combining OWL and RuleML
61.
go back to reference Bendall SC, Nolan GP. From single cells to deep phenotypes in cancer. Nat Biotechnol. 2012;30(7):639–47.CrossRefPubMed Bendall SC, Nolan GP. From single cells to deep phenotypes in cancer. Nat Biotechnol. 2012;30(7):639–47.CrossRefPubMed
62.
go back to reference Frey LJ, Lenert L, Lopez-Campos G. EHR Big Data deep phenotyping. Contribution of the IMIA Genomic Medicine Working Group. Yearb Med Inform. 2014;9:206–11.CrossRefPubMedPubMedCentral Frey LJ, Lenert L, Lopez-Campos G. EHR Big Data deep phenotyping. Contribution of the IMIA Genomic Medicine Working Group. Yearb Med Inform. 2014;9:206–11.CrossRefPubMedPubMedCentral
63.
go back to reference Kohane IS. Deeper, longer phenotyping to accelerate the discovery of the genetic architectures of diseases. Genome Biol. 2014;15(5):115.CrossRefPubMedCentral Kohane IS. Deeper, longer phenotyping to accelerate the discovery of the genetic architectures of diseases. Genome Biol. 2014;15(5):115.CrossRefPubMedCentral
64.
go back to reference Tracy RP. ‘Deep phenotyping’: characterizing populations in the era of genomics and systems biology. Curr Opin Lipidol. 2008;19(2):151–7.CrossRefPubMed Tracy RP. ‘Deep phenotyping’: characterizing populations in the era of genomics and systems biology. Curr Opin Lipidol. 2008;19(2):151–7.CrossRefPubMed
65.
go back to reference Jeanquartier F, Jean-Quartier C, Schreck T, Cemernek D, Holzinger A: Integrating Open Data on Cancer in Support to Tumor Growth Analysis. In: Information Technology in Bio- and Medical Informatics: 7th International Conference, ITBAM 2016, Porto, Portugal, September 5–8, 2016, Proceedings. Edited by Renda EM, Bursa M, Holzinger A, Khuri S. Cham: Springer International Publishing; 2016: 49–66. Jeanquartier F, Jean-Quartier C, Schreck T, Cemernek D, Holzinger A: Integrating Open Data on Cancer in Support to Tumor Growth Analysis. In: Information Technology in Bio- and Medical Informatics: 7th International Conference, ITBAM 2016, Porto, Portugal, September 5–8, 2016, Proceedings. Edited by Renda EM, Bursa M, Holzinger A, Khuri S. Cham: Springer International Publishing; 2016: 49–66.
66.
go back to reference Jeanquartier F, Jean-Quartier C, Cemernek D, Holzinger A. In silico modeling for tumor growth visualization. BMC Syst Biol. 2016;10(1):1–15.CrossRef Jeanquartier F, Jean-Quartier C, Cemernek D, Holzinger A. In silico modeling for tumor growth visualization. BMC Syst Biol. 2016;10(1):1–15.CrossRef
69.
go back to reference Oellrich A, Collier N, Groza T, Rebholz-Schuhmann D, Shah N, Bodenreider O, Boland MR, Georgiev I, Liu H, Livingston K et al. The digital revolution in phenotyping. Brief Bioinform 2015. Oellrich A, Collier N, Groza T, Rebholz-Schuhmann D, Shah N, Bodenreider O, Boland MR, Georgiev I, Liu H, Livingston K et al. The digital revolution in phenotyping. Brief Bioinform 2015.
Metadata
Title
An information model for computable cancer phenotypes
Authors
Harry Hochheiser
Melissa Castine
David Harris
Guergana Savova
Rebecca S. Jacobson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2016
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-016-0358-4

Other articles of this Issue 1/2016

BMC Medical Informatics and Decision Making 1/2016 Go to the issue