Skip to main content
Top
Published in: Trials 1/2019

Open Access 01-12-2019 | Study protocol

An individualised versus a conventional pneumoperitoneum pressure strategy during colorectal laparoscopic surgery: rationale and study protocol for a multicentre randomised clinical study

Authors: O. Diaz-Cambronero, G. Mazzinari, C. L. Errando, M. J. Schultz, B. Flor Lorente, N. García-Gregorio, M. Vila Montañés, Daniel Robles-Hernández, L. E. Olmedilla Arnal, A. Martín-De-Pablos, A. Marqués Marí, M. P. Argente Navarro, for the IPPCollapse-II study group

Published in: Trials | Issue 1/2019

Login to get access

Abstract

Background

A recent study shows that a multifaceted strategy using an individualised intra-abdominal pressure titration strategy during colorectal laparoscopic surgery results in an acceptable workspace at low intra-abdominal pressure in most patients. The multifaceted strategy, focused on lower to individualised intra-abdominal pressures, includes prestretching the abdominal wall during initial insufflation, deep neuromuscular blockade, low tidal volume ventilation settings and a modified lithotomy position. The study presented here tests the hypothesis that this strategy improves outcomes of patients scheduled for colorectal laparoscopic surgery.

Methods

The Individualized Pneumoperitoneum Pressure in Colorectal Laparoscopic Surgery versus Standard Therapy (IPPCollapse-II) study is a multicentre, two-arm, parallel-group, single-blinded randomised 1:1 clinical study that runs in four academic hospitals in Spain. Patients scheduled for colorectal laparoscopic surgery with American Society of Anesthesiologists classification I to III who are aged > 18 years and are without cognitive deficits are randomised to an individualised pneumoperitoneum pressure strategy (the intervention group) or to a conventional pneumoperitoneum pressure strategy (the control group). The primary outcome is recovery assessed with the Post-operative Quality of Recovery Scale (PQRS) at postoperative day 1. Secondary outcomes include PQRS score in the post anaesthesia care unit and at postoperative day 3, postoperative complications until postoperative day 28, hospital length of stay and process-related outcomes.

Discussion

The IPPCollapse-II study will be the first randomised clinical study that assesses the impact of an individualised pneumoperitoneum pressure strategy focused on working with the lowest intra-abdominal pressure during colorectal laparoscopic surgery on relevant patient-centred outcomes. The results of this large study, to be disseminated through conference presentations and publications in international peer-reviewed journals, are of ultimate importance for optimising the care and safety of laparoscopic abdominal surgery. Selection of patient-reported outcomes as the primary outcome of this study facilitates the translation into clinical practice. Access to source data will be made available through anonymised datasets upon request and after agreement of the Steering Committee of the IPPCollapse-II study.

Trial registration

ClinicalTrials.gov, NCT02773173. Registered on 16 May 2016. EudraCT, 2016-001693-15. Registered on 8 August 2016.
Appendix
Available only for authorised users
Literature
1.
go back to reference Trastulli S, Cirocchi R, Listorti C, et al. Laparoscopic vs open resection for rectal cancer: a meta-analysis of randomized clinical trials. Color Dis. 2012;14:277–96. Trastulli S, Cirocchi R, Listorti C, et al. Laparoscopic vs open resection for rectal cancer: a meta-analysis of randomized clinical trials. Color Dis. 2012;14:277–96.
2.
go back to reference Van Vugt JLA, Reisinger KW, Derikx JPM, et al. Improving the outcomes in oncological colorectal surgery. World J Gastroenterol. 2014;20:12445–57.PubMedPubMedCentral Van Vugt JLA, Reisinger KW, Derikx JPM, et al. Improving the outcomes in oncological colorectal surgery. World J Gastroenterol. 2014;20:12445–57.PubMedPubMedCentral
3.
go back to reference Lacy AM, García-Valdecasas JC, Delgado S, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet. 2002;359:2224–9.PubMed Lacy AM, García-Valdecasas JC, Delgado S, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet. 2002;359:2224–9.PubMed
4.
go back to reference Clinical Outcomes of Surgical Therapy Study Group, Nelson H, Sargent D, Wieand H, et al. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004;350:2050–9. Clinical Outcomes of Surgical Therapy Study Group, Nelson H, Sargent D, Wieand H, et al. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004;350:2050–9.
5.
go back to reference Guillou P, Quirke P, Thorpe H, et al. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet. 2005;365:1718–26.PubMed Guillou P, Quirke P, Thorpe H, et al. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet. 2005;365:1718–26.PubMed
6.
go back to reference Veldkamp R, Kuhry E, Hop W, et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 2005;6:477–84.PubMed Veldkamp R, Kuhry E, Hop W, et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 2005;6:477–84.PubMed
7.
go back to reference Kang SB, Park JW, Jeong SY, et al. Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): short-term outcomes of an open-label randomised controlled trial. Lancet Oncol. 2010;11:637–45.PubMed Kang SB, Park JW, Jeong SY, et al. Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): short-term outcomes of an open-label randomised controlled trial. Lancet Oncol. 2010;11:637–45.PubMed
8.
go back to reference Braga M, Frasson M, Vignali A, et al. Laparoscopic resection in rectal cancer patients: outcome and cost-benefit analysis. Dis Colon Rectum. 2007;50:464–71.PubMed Braga M, Frasson M, Vignali A, et al. Laparoscopic resection in rectal cancer patients: outcome and cost-benefit analysis. Dis Colon Rectum. 2007;50:464–71.PubMed
9.
go back to reference Maddison L, Karjagin J, Tenhunen J, et al. Moderate intra-abdominal hypertension is associated with an increased lactate-pyruvate ratio in the rectus abdominis muscle tissue: a pilot study during laparoscopic surgery. Ann Intensive Care. 2012;2(Suppl 1):S14.PubMedPubMedCentral Maddison L, Karjagin J, Tenhunen J, et al. Moderate intra-abdominal hypertension is associated with an increased lactate-pyruvate ratio in the rectus abdominis muscle tissue: a pilot study during laparoscopic surgery. Ann Intensive Care. 2012;2(Suppl 1):S14.PubMedPubMedCentral
10.
go back to reference Matsuzaki S, Jardon K, Maleysson E, et al. Impact of intraperitoneal pressure of a CO2 pneumoperitoneum on the surgical peritoneal environment. Hum Reprod. 2012;27(6):1613–23.PubMed Matsuzaki S, Jardon K, Maleysson E, et al. Impact of intraperitoneal pressure of a CO2 pneumoperitoneum on the surgical peritoneal environment. Hum Reprod. 2012;27(6):1613–23.PubMed
11.
go back to reference Sammour T, Mittal A, Loveday BPT, et al. Systematic review of oxidative stress associated with pneumoperitoneum. Br J Surg. 2009;96:836–50.PubMed Sammour T, Mittal A, Loveday BPT, et al. Systematic review of oxidative stress associated with pneumoperitoneum. Br J Surg. 2009;96:836–50.PubMed
12.
go back to reference Brokelman WJA, Lensvelt M, Rinkes IHMB, et al. Peritoneal changes due to laparoscopic surgery. Surg Endosc. 2011;25:1–9.PubMed Brokelman WJA, Lensvelt M, Rinkes IHMB, et al. Peritoneal changes due to laparoscopic surgery. Surg Endosc. 2011;25:1–9.PubMed
13.
go back to reference Schwarte LA, Scheeren TWL, Lorenz C, et al. Moderate increase in intraabdominal pressure attenuates gastric mucosal oxygen saturation in patients undergoing laparoscopy. Anesthesiology. 2004;100:1081–7.PubMed Schwarte LA, Scheeren TWL, Lorenz C, et al. Moderate increase in intraabdominal pressure attenuates gastric mucosal oxygen saturation in patients undergoing laparoscopy. Anesthesiology. 2004;100:1081–7.PubMed
14.
go back to reference Barczyński M, Herman RM. A prospective randomized trial on comparison of low-pressure (LP) and standard-pressure (SP) pneumoperitoneum for laparoscopic cholecystectomy. Surg Endosc. 2003;17:533–8.PubMed Barczyński M, Herman RM. A prospective randomized trial on comparison of low-pressure (LP) and standard-pressure (SP) pneumoperitoneum for laparoscopic cholecystectomy. Surg Endosc. 2003;17:533–8.PubMed
15.
go back to reference Neudecker J, Sauerland S, Neugebauer E, et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc. 2002;16:1121–43.PubMed Neudecker J, Sauerland S, Neugebauer E, et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc. 2002;16:1121–43.PubMed
16.
go back to reference Hatipoglu S, Akbulut S, Hatipoglu F, et al. Effect of laparoscopic abdominal surgery on splanchnic circulation: historical developments. World J Gastroenterol. 2014;20:18165–76.PubMedPubMedCentral Hatipoglu S, Akbulut S, Hatipoglu F, et al. Effect of laparoscopic abdominal surgery on splanchnic circulation: historical developments. World J Gastroenterol. 2014;20:18165–76.PubMedPubMedCentral
17.
go back to reference Jones O, Lindsey I, Cunningham C. Laparoscopic colorectal surgery. Br Med J. 2014;32:197–203. Jones O, Lindsey I, Cunningham C. Laparoscopic colorectal surgery. Br Med J. 2014;32:197–203.
18.
go back to reference Vlot J, Wijnen R, Stolker RJ, et al. Optimizing working space in porcine laparoscopy: CT measurement of the effects of intra-abdominal pressure. Surg Endosc. 2013;27:1668–73.PubMed Vlot J, Wijnen R, Stolker RJ, et al. Optimizing working space in porcine laparoscopy: CT measurement of the effects of intra-abdominal pressure. Surg Endosc. 2013;27:1668–73.PubMed
19.
go back to reference Mulier JPJ, Dillemans B, Van Cauwenberge S. Impact of the patient’s body position on the intraabdominal workspace during laparoscopic surgery. Surg Endosc. 2010;24:1398–402.PubMedPubMedCentral Mulier JPJ, Dillemans B, Van Cauwenberge S. Impact of the patient’s body position on the intraabdominal workspace during laparoscopic surgery. Surg Endosc. 2010;24:1398–402.PubMedPubMedCentral
20.
go back to reference Madsen MV, Staehr-Rye AK, Gätke MR, et al. Neuromuscular blockade for optimising surgical conditions during abdominal and gynaecological surgery: a systematic review. Acta Anaesthesiol Scand. 2015;59:1–16.PubMed Madsen MV, Staehr-Rye AK, Gätke MR, et al. Neuromuscular blockade for optimising surgical conditions during abdominal and gynaecological surgery: a systematic review. Acta Anaesthesiol Scand. 2015;59:1–16.PubMed
21.
go back to reference Bruintjes MH, Van Helden EV, Braat AE, et al. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: a systematic review and meta-analysis. Br J Anaesth. 2017;118:834–42.PubMed Bruintjes MH, Van Helden EV, Braat AE, et al. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: a systematic review and meta-analysis. Br J Anaesth. 2017;118:834–42.PubMed
22.
go back to reference Vlot J, Wijnen R, Stolker RJ, et al. Optimizing working space in laparoscopy: CT measurement of the effect of pre-stretching of the abdominal wall in a porcine model. Surg Endosc. 2014;28:841–6.PubMed Vlot J, Wijnen R, Stolker RJ, et al. Optimizing working space in laparoscopy: CT measurement of the effect of pre-stretching of the abdominal wall in a porcine model. Surg Endosc. 2014;28:841–6.PubMed
23.
go back to reference Diaz-Cambronero O, Flor Lorente B, Mazzinari G, et al. A multifaceted individualized pneumoperitoneum strategy for laparoscopic colorectal surgery: a multicenter observational feasibility study. Surg Endosc. 2019;33(1):252–60.PubMed Diaz-Cambronero O, Flor Lorente B, Mazzinari G, et al. A multifaceted individualized pneumoperitoneum strategy for laparoscopic colorectal surgery: a multicenter observational feasibility study. Surg Endosc. 2019;33(1):252–60.PubMed
24.
go back to reference Chan AW, Tetzlaff JM, Gotzsche PC, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. Br Med J. 2013;346:1–42. Chan AW, Tetzlaff JM, Gotzsche PC, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. Br Med J. 2013;346:1–42.
25.
go back to reference Calvert M, Kyte D, Mercieca-Bebber R, et al. Guidelines for inclusion of patient-reported outcomes in clinical trial protocols: the SPIRIT-PRO extension. JAMA. 2018;319:483–94.PubMed Calvert M, Kyte D, Mercieca-Bebber R, et al. Guidelines for inclusion of patient-reported outcomes in clinical trial protocols: the SPIRIT-PRO extension. JAMA. 2018;319:483–94.PubMed
27.
go back to reference Serpa Neto A, Hemmes SNT, Barbas CSV, et al. Protective versus conventional ventilation for surgery: a systematic review and patient data meta-analysis. Anesthesiology. 2015;123:66–78.PubMed Serpa Neto A, Hemmes SNT, Barbas CSV, et al. Protective versus conventional ventilation for surgery: a systematic review and patient data meta-analysis. Anesthesiology. 2015;123:66–78.PubMed
28.
go back to reference Malbrain MLNG, Viaene D, Kortgen A, et al. Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension. Ann Intensive Care. 2012;2012(Suppl 1):S19. Malbrain MLNG, Viaene D, Kortgen A, et al. Relationship between intra-abdominal pressure and indocyanine green plasma disappearance rate: hepatic perfusion may be impaired in critically ill patients with intra-abdominal hypertension. Ann Intensive Care. 2012;2012(Suppl 1):S19.
29.
go back to reference Royse CF, Newman S, Chung F, et al. Development and feasibility of a scale to assess postoperative recovery. Anesthesiology. 2010;113:892–905. Royse CF, Newman S, Chung F, et al. Development and feasibility of a scale to assess postoperative recovery. Anesthesiology. 2010;113:892–905.
30.
go back to reference Bowyer A, Jakobsson J, Ljungqvist O, et al. A review of the scope and measurement of postoperative quality of recovery. Anaesthesia. 2014;69:1266–78.PubMed Bowyer A, Jakobsson J, Ljungqvist O, et al. A review of the scope and measurement of postoperative quality of recovery. Anaesthesia. 2014;69:1266–78.PubMed
31.
go back to reference Royse CF, Saager L, Whitlock R, et al. Impact of methylprednisolone on postoperative quality of recovery and delirium in the Steroids in Cardiac Surgery trial: a randomized, double-blind, placebo-controlled substudy. Anesthesiology. 2017;126:223–33.PubMed Royse CF, Saager L, Whitlock R, et al. Impact of methylprednisolone on postoperative quality of recovery and delirium in the Steroids in Cardiac Surgery trial: a randomized, double-blind, placebo-controlled substudy. Anesthesiology. 2017;126:223–33.PubMed
32.
go back to reference Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measur. Eur J Anaesthesiol. 2015;32:88–105.PubMed Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measur. Eur J Anaesthesiol. 2015;32:88–105.PubMed
33.
go back to reference Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.PubMedPubMedCentral Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.PubMedPubMedCentral
34.
go back to reference Neto AS, Hemmes SNT, Barbas CSV, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–80.PubMed Neto AS, Hemmes SNT, Barbas CSV, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–80.PubMed
35.
go back to reference Madsen MV, Gätke MR, Springborg HH, et al. Optimising abdominal space with deep neuromuscular blockade in gynaecologic laparoscopy - a randomised, blinded crossover study. Acta Anaesthesiol Scand. 2015;59:441–7.PubMed Madsen MV, Gätke MR, Springborg HH, et al. Optimising abdominal space with deep neuromuscular blockade in gynaecologic laparoscopy - a randomised, blinded crossover study. Acta Anaesthesiol Scand. 2015;59:441–7.PubMed
36.
go back to reference Özdemir-van Brunschot DMD, Scheffer GJ, van der Jagt M, et al. Quality of recovery after low-pressure laparoscopic donor nephrectomy facilitated by deep neuromuscular blockade: a randomized controlled study. World J Surg. 2017;41:2950–8.PubMedPubMedCentral Özdemir-van Brunschot DMD, Scheffer GJ, van der Jagt M, et al. Quality of recovery after low-pressure laparoscopic donor nephrectomy facilitated by deep neuromuscular blockade: a randomized controlled study. World J Surg. 2017;41:2950–8.PubMedPubMedCentral
37.
go back to reference Özdemir-van Brunschot DMD, Braat AE, et al. Deep neuromuscular blockade improves surgical conditions during low-pressure pneumoperitoneum laparoscopic donor nephrectomy. Surg Endosc. 2018;32:245–51.PubMed Özdemir-van Brunschot DMD, Braat AE, et al. Deep neuromuscular blockade improves surgical conditions during low-pressure pneumoperitoneum laparoscopic donor nephrectomy. Surg Endosc. 2018;32:245–51.PubMed
38.
go back to reference Staehr-Rye AK, Rasmussen LS, Rosenberg J, et al. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg. 2014;119:1084–92.PubMed Staehr-Rye AK, Rasmussen LS, Rosenberg J, et al. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg. 2014;119:1084–92.PubMed
39.
go back to reference Barrio J, Errando CL, García-Ramón J, et al. Influence of depth of neuromuscular blockade on surgical conditions during low-pressure pneumoperitoneum laparoscopic cholecystectomy: a randomized blinded study. J Clin Anesth. 2017;42:26–30.PubMed Barrio J, Errando CL, García-Ramón J, et al. Influence of depth of neuromuscular blockade on surgical conditions during low-pressure pneumoperitoneum laparoscopic cholecystectomy: a randomized blinded study. J Clin Anesth. 2017;42:26–30.PubMed
40.
go back to reference Barrio J, Errando CL, San Miguel G, et al. Effect of depth of neuromuscular blockade on the abdominal space during pneumoperitoneum establishment in laparoscopic surgery. J Clin Anesth. 2016;34:197–203.PubMed Barrio J, Errando CL, San Miguel G, et al. Effect of depth of neuromuscular blockade on the abdominal space during pneumoperitoneum establishment in laparoscopic surgery. J Clin Anesth. 2016;34:197–203.PubMed
41.
go back to reference Dubois PE, Putz L, Jamart J, et al. Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: a randomised controlled trial. Eur J Anaesthesiol. 2014;31:430–6.PubMed Dubois PE, Putz L, Jamart J, et al. Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: a randomised controlled trial. Eur J Anaesthesiol. 2014;31:430–6.PubMed
42.
go back to reference Rosenberg J, Herring WJ, Blobner M, et al. Deep neuromuscular blockade improves laparoscopic surgical conditions: a randomized, controlled study. Adv Ther. 2017;34:925–36.PubMed Rosenberg J, Herring WJ, Blobner M, et al. Deep neuromuscular blockade improves laparoscopic surgical conditions: a randomized, controlled study. Adv Ther. 2017;34:925–36.PubMed
43.
go back to reference Madsen MV, Staehr-Rye AK, Claudius C, et al. Is deep neuromuscular blockade beneficial in laparoscopic surgery? Yes, probably. Acta Anaesthesiol Scand. 2016;60:710–6.PubMed Madsen MV, Staehr-Rye AK, Claudius C, et al. Is deep neuromuscular blockade beneficial in laparoscopic surgery? Yes, probably. Acta Anaesthesiol Scand. 2016;60:710–6.PubMed
44.
go back to reference Kopman AF, Naguib M. Is deep neuromuscular block beneficial in laparoscopic surgery? No, probably not. Acta Anaesthesiol Scand. 2016;60:717–22.PubMed Kopman AF, Naguib M. Is deep neuromuscular block beneficial in laparoscopic surgery? No, probably not. Acta Anaesthesiol Scand. 2016;60:717–22.PubMed
45.
go back to reference Kopman AF, Naguib M. Laparoscopic surgery and muscle relaxants: is deep block helpful? Anesth Analg. 2015;120:51–8.PubMed Kopman AF, Naguib M. Laparoscopic surgery and muscle relaxants: is deep block helpful? Anesth Analg. 2015;120:51–8.PubMed
46.
go back to reference Van Wijk RM, Watts RW, Ledowski T, et al. Deep neuromuscular block reduces intra-abdominal pressure requirements during laparoscopic cholecystectomy: a prospective observational study. Acta Anaesthesiol Scand. 2015;59:434–40.PubMed Van Wijk RM, Watts RW, Ledowski T, et al. Deep neuromuscular block reduces intra-abdominal pressure requirements during laparoscopic cholecystectomy: a prospective observational study. Acta Anaesthesiol Scand. 2015;59:434–40.PubMed
47.
go back to reference Kim MH, Lee KY, Lee KY, et al. Maintaining optimal surgical conditions with low insufflation pressures is possible with deep neuromuscular blockade during laparoscopic colorectal surgery: a prospective, randomized, double-blind, parallel-group clinical trial. Medicine (Baltimore). 2016;95:1–7. Kim MH, Lee KY, Lee KY, et al. Maintaining optimal surgical conditions with low insufflation pressures is possible with deep neuromuscular blockade during laparoscopic colorectal surgery: a prospective, randomized, double-blind, parallel-group clinical trial. Medicine (Baltimore). 2016;95:1–7.
48.
go back to reference Abola RE, Bennett-Guerrero E, Kent ML, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative joint consensus statement on patient-reported outcomes in an enhanced recovery pathway. Anesth Analg. 2018;126:1874–82.PubMed Abola RE, Bennett-Guerrero E, Kent ML, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative joint consensus statement on patient-reported outcomes in an enhanced recovery pathway. Anesth Analg. 2018;126:1874–82.PubMed
49.
go back to reference Myles PS, Boney O, Botti M, et al. Systematic review and consensus definitions for the Standardised Endpoints in Perioperative Medicine (StEP) initiative: patient comfort. Br J Anaesth. 2018;12:705–11. Myles PS, Boney O, Botti M, et al. Systematic review and consensus definitions for the Standardised Endpoints in Perioperative Medicine (StEP) initiative: patient comfort. Br J Anaesth. 2018;12:705–11.
50.
go back to reference Bowyer A, Royse CF. The future of postoperative quality of recovery assessment: multidimensional, dichotomous, and directed to individualize care to patients after surgery. Curr Opin Anaesthesiol. 2016;29:683–90.PubMed Bowyer A, Royse CF. The future of postoperative quality of recovery assessment: multidimensional, dichotomous, and directed to individualize care to patients after surgery. Curr Opin Anaesthesiol. 2016;29:683–90.PubMed
51.
go back to reference Royse CF, Williams Z, Ye G, et al. Knee surgery recovery: Post-operative Quality of Recovery Scale comparison of age and complexity of surgery. Acta Anaesthesiol Scand. 2014;58:660–7.PubMed Royse CF, Williams Z, Ye G, et al. Knee surgery recovery: Post-operative Quality of Recovery Scale comparison of age and complexity of surgery. Acta Anaesthesiol Scand. 2014;58:660–7.PubMed
52.
go back to reference Ansari BM, Hogan MP, Collier TJ, et al. A Randomized controlled trial of high-flow nasal oxygen (Optiflow) as part of an enhanced recovery program after lung resection surgery. Ann Thorac Surg. 2016;10:459–64. Ansari BM, Hogan MP, Collier TJ, et al. A Randomized controlled trial of high-flow nasal oxygen (Optiflow) as part of an enhanced recovery program after lung resection surgery. Ann Thorac Surg. 2016;10:459–64.
53.
go back to reference Poitras S, Wood KS, Savard J, et al. Assessing functional recovery shortly after knee or hip arthroplasty: a comparison of the clinimetric properties of four tools. BMC Musculoskelet Disord. 2016;17:1–9. Poitras S, Wood KS, Savard J, et al. Assessing functional recovery shortly after knee or hip arthroplasty: a comparison of the clinimetric properties of four tools. BMC Musculoskelet Disord. 2016;17:1–9.
54.
go back to reference Pérez Herrero MA, López Álvarez S, Fadrique Fuentes A, et al. Calidad de la recuperación posquirúrgica tras cirugía de mama. Anestesia general combinada con bloqueo paravertebral versus bloqueo del espacio serrato-intercostal. Rev Esp Anestesiol Reanim. 2016;63:564–71.PubMed Pérez Herrero MA, López Álvarez S, Fadrique Fuentes A, et al. Calidad de la recuperación posquirúrgica tras cirugía de mama. Anestesia general combinada con bloqueo paravertebral versus bloqueo del espacio serrato-intercostal. Rev Esp Anestesiol Reanim. 2016;63:564–71.PubMed
55.
go back to reference Ni Eochagain A, Burns D, Riedel B, Sessler DI, Buggy DJ. Effect of anaesthetic technique during primary breast cancer surgery on neutrophil-lymphocyte ratio, platelet-lymphocyte ratio, and time of commencement of intended oncologic therapy: a follow-up analysis of a prospective randomised trial. Anaesthesia. 2018;73:603–11.PubMed Ni Eochagain A, Burns D, Riedel B, Sessler DI, Buggy DJ. Effect of anaesthetic technique during primary breast cancer surgery on neutrophil-lymphocyte ratio, platelet-lymphocyte ratio, and time of commencement of intended oncologic therapy: a follow-up analysis of a prospective randomised trial. Anaesthesia. 2018;73:603–11.PubMed
56.
go back to reference Garcia-Granero A, Frasson M, Flor-Lorente B, et al. Procalcitonin and C-reactive protein as early predictors of anastomotic leak in colorectal surgery: a prospective observational study. Dis Colon Rectum. 2013;56:475–83.PubMed Garcia-Granero A, Frasson M, Flor-Lorente B, et al. Procalcitonin and C-reactive protein as early predictors of anastomotic leak in colorectal surgery: a prospective observational study. Dis Colon Rectum. 2013;56:475–83.PubMed
Metadata
Title
An individualised versus a conventional pneumoperitoneum pressure strategy during colorectal laparoscopic surgery: rationale and study protocol for a multicentre randomised clinical study
Authors
O. Diaz-Cambronero
G. Mazzinari
C. L. Errando
M. J. Schultz
B. Flor Lorente
N. García-Gregorio
M. Vila Montañés
Daniel Robles-Hernández
L. E. Olmedilla Arnal
A. Martín-De-Pablos
A. Marqués Marí
M. P. Argente Navarro
for the IPPCollapse-II study group
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Trials / Issue 1/2019
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-019-3255-1

Other articles of this Issue 1/2019

Trials 1/2019 Go to the issue