Skip to main content
Top
Published in: Journal of Medical Systems 9/2014

01-09-2014 | Systems-Level Quality Improvement

An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images

Authors: Razieh Ganjee, Reza Azmi, Behrouz Gholizadeh

Published in: Journal of Medical Systems | Issue 9/2014

Login to get access

Abstract

Most of the retinal blood vessel segmentation approaches use low level features, resulting in segmenting non-vessel structures together with vessel structures in pathological retinal images. In this paper, a new segmentation method based on high level features is proposed which can process the structure of vessel and non-vessel independently. In this method, segmentation is done in two steps. First, using low level features segmentation is accomplished. Second, using high level features, the non-vessel components are removed. For evaluation, STARE database is used which is publicly available in this field. The results show that the proposed method has 0.9536 accuracy and 0.0191 false positive average on all images of the database and 0.9542 accuracy and 0.0236 false positive average on pathological images. Therefore, the proposed approach shows acceptable accuracy on all images compared to other state of the art methods, and the least false positive average on pathological images.
Literature
1.
go back to reference Niemeijer, M., Abramoff, M., and van Ginneken, B., Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans. Med. Imag 26:116–127, 2007.CrossRef Niemeijer, M., Abramoff, M., and van Ginneken, B., Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans. Med. Imag 26:116–127, 2007.CrossRef
2.
go back to reference Fleming, A., Philip, S., Goatman, K., Olson, J., and Sharp, P., Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Imag 25:1223–1232, 2006.CrossRef Fleming, A., Philip, S., Goatman, K., Olson, J., and Sharp, P., Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Imag 25:1223–1232, 2006.CrossRef
3.
go back to reference Nayak, J., Bhat, P. S., Acharya, U. R., Lim, C. M., and Kagathi, M., Automated identification of diabetic retinopathy stages using digital fundus images. J. Med. Syst. 32:107–115, 2008.CrossRef Nayak, J., Bhat, P. S., Acharya, U. R., Lim, C. M., and Kagathi, M., Automated identification of diabetic retinopathy stages using digital fundus images. J. Med. Syst. 32:107–115, 2008.CrossRef
4.
go back to reference Akram, U. M., and Khan, S. A., Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J. Med. Syst. 36:3151–3162, 2012.CrossRef Akram, U. M., and Khan, S. A., Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J. Med. Syst. 36:3151–3162, 2012.CrossRef
5.
go back to reference Niemeijer, M., Abràmoff, M. D., and van Ginneken, B., Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans. Med. Imag 28:775–785, 2009.CrossRef Niemeijer, M., Abràmoff, M. D., and van Ginneken, B., Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans. Med. Imag 28:775–785, 2009.CrossRef
6.
go back to reference Frank, R.N., “Diabetic retinopathy,” Prog. Retin Eye Res., pp. 361–392, 1995. Frank, R.N., “Diabetic retinopathy,” Prog. Retin Eye Res., pp. 361–392, 1995.
7.
go back to reference Faust, O., Acharya, U. R., Ng, E. Y. K., Ng, K. H., and Suri, J. S., Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review. J. Med. Syst. 36:145–157, 2012.CrossRef Faust, O., Acharya, U. R., Ng, E. Y. K., Ng, K. H., and Suri, J. S., Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review. J. Med. Syst. 36:145–157, 2012.CrossRef
8.
go back to reference Yun, W. L., Acharya, R., Venkatesh, Y. V., Min, C. C. L. C., and Ng, E. Y. K., Identification of different stages of diabetic retinopathy. Inf. Sci. 178:106–121, 2008.CrossRef Yun, W. L., Acharya, R., Venkatesh, Y. V., Min, C. C. L. C., and Ng, E. Y. K., Identification of different stages of diabetic retinopathy. Inf. Sci. 178:106–121, 2008.CrossRef
9.
go back to reference Williams, R., et al., Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye 18:963–983, 2004.CrossRef Williams, R., et al., Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye 18:963–983, 2004.CrossRef
10.
go back to reference Reza, A. W., and Eswaran, C., A decision support system for automatic screening of non-proliferative diabetic retinopathy. J. Med. Syst. 35:17–24, 2011.CrossRef Reza, A. W., and Eswaran, C., A decision support system for automatic screening of non-proliferative diabetic retinopathy. J. Med. Syst. 35:17–24, 2011.CrossRef
11.
go back to reference Rajendra Acharya, U., Ng, E. Y. K., Jen-Hong Tan, S., Sree, V., and Ng, K.-H., An integrated index for the identification of diabetic retinopathy stages using texture parameters. J. Med. Syst. 36:2011–2020, 2012.CrossRef Rajendra Acharya, U., Ng, E. Y. K., Jen-Hong Tan, S., Sree, V., and Ng, K.-H., An integrated index for the identification of diabetic retinopathy stages using texture parameters. J. Med. Syst. 36:2011–2020, 2012.CrossRef
12.
go back to reference Mookiah, M. R. K., et al., Computer-aided diagnosis of diabetic retinopathy: A review. Comput. Biol. Med. 43:2136–2155, 2013.CrossRef Mookiah, M. R. K., et al., Computer-aided diagnosis of diabetic retinopathy: A review. Comput. Biol. Med. 43:2136–2155, 2013.CrossRef
13.
go back to reference Winder, R. J., Morrow, P. J., McRitchie, I. N., Bailie, J. R., and Hart, P. M., Algorithms for digital image processing in diabetic retinopathy. Comput. Med. Imaging Graph. 33:608–622, 2009.CrossRef Winder, R. J., Morrow, P. J., McRitchie, I. N., Bailie, J. R., and Hart, P. M., Algorithms for digital image processing in diabetic retinopathy. Comput. Med. Imaging Graph. 33:608–622, 2009.CrossRef
14.
go back to reference Teng, T., Lefley, M., and Claremont, D., Progress towards automated diabetic ocular screening: A review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Comput. 40(1):2–13, 2002.CrossRef Teng, T., Lefley, M., and Claremont, D., Progress towards automated diabetic ocular screening: A review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Comput. 40(1):2–13, 2002.CrossRef
15.
go back to reference Hoover, A., Kouznetsova, V., and Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag 19:203–210, 2000.CrossRef Hoover, A., Kouznetsova, V., and Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag 19:203–210, 2000.CrossRef
16.
go back to reference Fraz, M., et al., Blood vessel segmentation methodologies in retinal images— a survey. Comput. Methods Prog. Biomed. 108:407–433, 2012.CrossRef Fraz, M., et al., Blood vessel segmentation methodologies in retinal images— a survey. Comput. Methods Prog. Biomed. 108:407–433, 2012.CrossRef
17.
go back to reference Zhang, B., Zhang, L., Zhang, L., and Karray, F., Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40:438–445, 2010.CrossRef Zhang, B., Zhang, L., Zhang, L., and Karray, F., Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40:438–445, 2010.CrossRef
18.
go back to reference Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag 8:263–269, 1989.CrossRef Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag 8:263–269, 1989.CrossRef
19.
go back to reference Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:262–267, 2007.CrossRef Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:262–267, 2007.CrossRef
20.
go back to reference Zhang, L., Li, Q., You, J., and Zhang, D., A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans. Inf. Technol. Biomed. 13:528–534, 2009.CrossRef Zhang, L., Li, Q., You, J., and Zhang, D., A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans. Inf. Technol. Biomed. 13:528–534, 2009.CrossRef
21.
go back to reference Li, Q., You, J., and Zhang, D., Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst. Appl. 39:7600–7610, 2012.CrossRef Li, Q., You, J., and Zhang, D., Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst. Appl. 39:7600–7610, 2012.CrossRef
22.
go back to reference Fathi, A., and Naghsh-Nilchi, A. R., Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed. Signal Process. Control 8:71–80, 2013.CrossRef Fathi, A., and Naghsh-Nilchi, A. R., Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed. Signal Process. Control 8:71–80, 2013.CrossRef
23.
go back to reference Nguyen, U. T. V., Bhuiyan, A., Park, L. A. F., and Ramamohanarao, K., An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46:703–715, 2013.CrossRef Nguyen, U. T. V., Bhuiyan, A., Park, L. A. F., and Ramamohanarao, K., An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46:703–715, 2013.CrossRef
24.
go back to reference Vlachos, M., and Dermatas, E., Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34:213–227, 2010.CrossRef Vlachos, M., and Dermatas, E., Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34:213–227, 2010.CrossRef
25.
go back to reference Yin, Y., Ade, M., and Bourennane, S., Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn. 45:1235–1244, 2012.CrossRefMATH Yin, Y., Ade, M., and Bourennane, S., Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn. 45:1235–1244, 2012.CrossRefMATH
26.
go back to reference Delibasis, K. K., Kechriniotis, A. I., Tsonos, C., and Assimakis, N., Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput. Methods Prog. Biomed 100:108–122, 2010.CrossRef Delibasis, K. K., Kechriniotis, A. I., Tsonos, C., and Assimakis, N., Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput. Methods Prog. Biomed 100:108–122, 2010.CrossRef
27.
go back to reference Adel, M., Moussaoui, A., Rasigni, M., Bourennane, S., and Hamami, L., Statistical-based tracking technique for linear structures detection: application to vessel segmentation in medical images. IEEE Signal Process. Lett. 17:555–558, 2010.CrossRef Adel, M., Moussaoui, A., Rasigni, M., Bourennane, S., and Hamami, L., Statistical-based tracking technique for linear structures detection: application to vessel segmentation in medical images. IEEE Signal Process. Lett. 17:555–558, 2010.CrossRef
28.
go back to reference Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., and van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag 23:501–509, 2004.CrossRef Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., and van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag 23:501–509, 2004.CrossRef
29.
go back to reference Soares, J. V. B., Leandro, J. J. G., CesarJr, R. M., Jelinek, H. F., and Cree, M. J., Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag 25:1214–1222, 2006.CrossRef Soares, J. V. B., Leandro, J. J. G., CesarJr, R. M., Jelinek, H. F., and Cree, M. J., Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag 25:1214–1222, 2006.CrossRef
30.
go back to reference Ricci, E., and Perfetti, R., Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imag 26:1357–1365, 2007.CrossRef Ricci, E., and Perfetti, R., Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imag 26:1357–1365, 2007.CrossRef
31.
go back to reference Lupascu, C. A., Tegolo, D., and Trucco, E., retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14:1267–1274, 2010.CrossRef Lupascu, C. A., Tegolo, D., and Trucco, E., retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14:1267–1274, 2010.CrossRef
32.
go back to reference Marín, D., Aquino, A., Gegúndez-Arias, M. E., and Bravo, J. M., A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag 30:146–158, 2011.CrossRef Marín, D., Aquino, A., Gegúndez-Arias, M. E., and Bravo, J. M., A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag 30:146–158, 2011.CrossRef
33.
go back to reference You, X., Peng, Q., Yaun, Y., Cheng, Y., and Lei, J., Segmentation of retinal blood vessels sing the radial projection and semi-supervised approach. Pattern Recogn. 44:2314–2324, 2011.CrossRef You, X., Peng, Q., Yaun, Y., Cheng, Y., and Lei, J., Segmentation of retinal blood vessels sing the radial projection and semi-supervised approach. Pattern Recogn. 44:2314–2324, 2011.CrossRef
34.
go back to reference Garg, S., Sivaswamy, J., Chandra, S., “Unsupervised curvature-based retinal vessel segmentation,” Proc. IEEE Int. Symp. BioMed. Imaging, pp. 344–347, 2007. Garg, S., Sivaswamy, J., Chandra, S., “Unsupervised curvature-based retinal vessel segmentation,” Proc. IEEE Int. Symp. BioMed. Imaging, pp. 344–347, 2007.
35.
go back to reference Kande, G. B., Subbaiah, P. V., and Savithri, T. S., Unsupervised Fuzzy Based Vessel Segmentation In Pathological Digital Fundus Images. J. Med. Syst. 34:849–858, 2010.CrossRef Kande, G. B., Subbaiah, P. V., and Savithri, T. S., Unsupervised Fuzzy Based Vessel Segmentation In Pathological Digital Fundus Images. J. Med. Syst. 34:849–858, 2010.CrossRef
36.
go back to reference Ng, J., et al., Maximum likelihood estimation of vessel parameters from scale space analysis. Image Vis. Comput. 28:55–63, 2010.CrossRef Ng, J., et al., Maximum likelihood estimation of vessel parameters from scale space analysis. Image Vis. Comput. 28:55–63, 2010.CrossRef
37.
go back to reference Mendonca, A. M., and Campilho, A., Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag 25:1200–1213, 2006.CrossRef Mendonca, A. M., and Campilho, A., Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag 25:1200–1213, 2006.CrossRef
38.
go back to reference Palomera-Perez, M. A., Martinez-Perez, M. E., Benitez-Perez, H., and Ortega-Arjona, J. L., Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14:500–506, 2010.CrossRef Palomera-Perez, M. A., Martinez-Perez, M. E., Benitez-Perez, H., and Ortega-Arjona, J. L., Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14:500–506, 2010.CrossRef
39.
go back to reference Martinez-Prez, M. E., Hughes, A. D., Thom, S. A., Bharath, A. A., and Parker, K. H., Segmentation of blood vessels from red-free and fluoroscein retinal images. Image Anal 11:47–61, 2007.CrossRef Martinez-Prez, M. E., Hughes, A. D., Thom, S. A., Bharath, A. A., and Parker, K. H., Segmentation of blood vessels from red-free and fluoroscein retinal images. Image Anal 11:47–61, 2007.CrossRef
Metadata
Title
An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images
Authors
Razieh Ganjee
Reza Azmi
Behrouz Gholizadeh
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 9/2014
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-014-0108-z

Other articles of this Issue 9/2014

Journal of Medical Systems 9/2014 Go to the issue