Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 5/2008

01-05-2008 | Original Article

An immunotherapy approach with dendritic cells genetically modified to express the tumor-associated antigen, HER2

Authors: Tsukasa Nabekura, Toshiro Nagasawa, Hiromitsu Nakauchi, Masafumi Onodera

Published in: Cancer Immunology, Immunotherapy | Issue 5/2008

Login to get access

Abstract

Dendritic cells (DC), genetically modified to express ovalbumin by the retroviral vector GCDNsap, can elicit stronger anti-tumor immunity than those loaded with the peptides. To assess the clinical feasibility of the strategy, such DC were prepared by differentiation of hematopoietic progenitor cells transduced with the human epidermal growth factor receptor 2 (HER2). When inoculated in mice, the DC primed both HER2-specific cytotoxic T lymphocytes and type 1 T helper lymphocytes, resulting in production of HER2-specific antibody. Of importance is that the antibody mediated antibody-dependent cellular cytotoxicity and opsonization. The potent anti-tumor effects were also confirmed by results of experiments using HER2-transgenic mice. Inoculation of HER2-transduced DC resulted in longer disease-free survival of treated mice that showed significant reduction of primary and metastatic tumors. Interestingly, footpad inoculation resulted in stronger anti-tumor effects compared to subcutaneous administration and induced higher levels of the HER2-specific antibody, suggesting that an important role of humoral immunity in anti-tumor effects for malignancies with membrane-type tumor-associated antigens (TAA). Taken together, vaccination of the TAA-transduced DC may represent a promising form of therapy for breast cancers expressing HER2.
Literature
1.
go back to reference Ashley DM, Faiola B, Nair S, Hale LP, Bigner BD, Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce anti-tumor immunity against central nervous system tumors. J Exp Med 186:1177–1182PubMedCrossRef Ashley DM, Faiola B, Nair S, Hale LP, Bigner BD, Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce anti-tumor immunity against central nervous system tumors. J Exp Med 186:1177–1182PubMedCrossRef
2.
go back to reference Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y, Pulendran B, Palucka K (2000) Immunology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRef Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y, Pulendran B, Palucka K (2000) Immunology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRef
3.
go back to reference Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458PubMed Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458PubMed
4.
5.
go back to reference Bargmann CI, Hung M, Weinberg RA (1986) The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226–230PubMedCrossRef Bargmann CI, Hung M, Weinberg RA (1986) The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226–230PubMedCrossRef
7.
go back to reference Cranmer LD, Trevor KT, Hersh EM (2004) Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother 53:275–306PubMedCrossRef Cranmer LD, Trevor KT, Hersh EM (2004) Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother 53:275–306PubMedCrossRef
8.
go back to reference Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20:2624–2632PubMedCrossRef Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20:2624–2632PubMedCrossRef
9.
go back to reference Disis ML, Shiota FM, Cheever MA (1998) Human HER-2/neu protein immunization circumvents tolerance to rat neu: a vaccine strategy for ‘self’ tumor antigen. Immunology 93:192–199PubMedCrossRef Disis ML, Shiota FM, Cheever MA (1998) Human HER-2/neu protein immunization circumvents tolerance to rat neu: a vaccine strategy for ‘self’ tumor antigen. Immunology 93:192–199PubMedCrossRef
10.
go back to reference Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG (2001) Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 167:7150–7156PubMed Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG (2001) Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 167:7150–7156PubMed
11.
go back to reference Gallucci S, Loloema M, Martinzer P (1995) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255CrossRef Gallucci S, Loloema M, Martinzer P (1995) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255CrossRef
12.
go back to reference Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82–87PubMedCrossRef Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82–87PubMedCrossRef
13.
go back to reference Gorer PA (1950) Studies in antibody response of mice to tumour inoculation. Br J Cancer 4:372–379PubMed Gorer PA (1950) Studies in antibody response of mice to tumour inoculation. Br J Cancer 4:372–379PubMed
14.
go back to reference Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 9:10578–10582CrossRef Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 9:10578–10582CrossRef
15.
go back to reference Henderson RA, Nimgaonkar MT, Watkins SC, Robbins PD, Ball ED, Finn OJ (1996) Human dendritic cells genetically engineered to express high level of the human epithelial tumor antigen mucin (MUC-1). Cancer Res 56:3763–3770PubMed Henderson RA, Nimgaonkar MT, Watkins SC, Robbins PD, Ball ED, Finn OJ (1996) Human dendritic cells genetically engineered to express high level of the human epithelial tumor antigen mucin (MUC-1). Cancer Res 56:3763–3770PubMed
16.
go back to reference Ikuta Y, Katayama N, Wang L, Okugawa T, Takahashi Y, Schmitt M, Gu X, Watanabe M, Akiyoshi K, Nakamura H, Kuribayashi K, Sunamoto J, Shiku H (2002) Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 99:3717–3724PubMedCrossRef Ikuta Y, Katayama N, Wang L, Okugawa T, Takahashi Y, Schmitt M, Gu X, Watanabe M, Akiyoshi K, Nakamura H, Kuribayashi K, Sunamoto J, Shiku H (2002) Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 99:3717–3724PubMedCrossRef
17.
go back to reference Jenne L, Schuler G, Steinkasserer A (2001) Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 22:102–107PubMedCrossRef Jenne L, Schuler G, Steinkasserer A (2001) Viral vectors for dendritic cell-based immunotherapy. Trends Immunol 22:102–107PubMedCrossRef
18.
go back to reference Lapointe R, Royal RE, Reevesb ME, Altomare I, Robbins PF, Hwu P (2001) Retrovirally transduced human dendritic cells can generate T cells recognizing multiple MHC class I and class II epitopes from the melanoma antigen glycoprotein 100. J Immunol 167:4758–4764PubMed Lapointe R, Royal RE, Reevesb ME, Altomare I, Robbins PF, Hwu P (2001) Retrovirally transduced human dendritic cells can generate T cells recognizing multiple MHC class I and class II epitopes from the melanoma antigen glycoprotein 100. J Immunol 167:4758–4764PubMed
19.
go back to reference Lindemann C, Schilz AJ, Emons B, Baum C, Löw R, Fauser AA, Kuehlcke K, Eckert H (2002) Down-regulation of retroviral transgene expression during differentiation of progenitor-derived dendritic cells. Exp Hematol 30:150–157PubMedCrossRef Lindemann C, Schilz AJ, Emons B, Baum C, Löw R, Fauser AA, Kuehlcke K, Eckert H (2002) Down-regulation of retroviral transgene expression during differentiation of progenitor-derived dendritic cells. Exp Hematol 30:150–157PubMedCrossRef
20.
go back to reference Liu Y (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–262PubMedCrossRef Liu Y (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–262PubMedCrossRef
21.
go back to reference Lu Y, Wei Y, Tian L, Zhao X, Yang L, Hu B, Kan B, Wen Y, Liu F, Deng H, Li J, Mao Y, Lei S, Huang M, Peng F, Jiang Y, Zhou H, Zhou L, Luo F (2003) Immunogene therapy of tumor with vaccine based on xenogeneic epidermal growth factor receptor. J Immunol 170:3162–3170PubMed Lu Y, Wei Y, Tian L, Zhao X, Yang L, Hu B, Kan B, Wen Y, Liu F, Deng H, Li J, Mao Y, Lei S, Huang M, Peng F, Jiang Y, Zhou H, Zhou L, Luo F (2003) Immunogene therapy of tumor with vaccine based on xenogeneic epidermal growth factor receptor. J Immunol 170:3162–3170PubMed
22.
go back to reference Maguire HC Jr, Greene MI (1989) The neu (c-erbB-2) oncogene. Semin Oncol 16:148–155PubMed Maguire HC Jr, Greene MI (1989) The neu (c-erbB-2) oncogene. Semin Oncol 16:148–155PubMed
23.
go back to reference Matzinger P (1991) The JAM test: a simple assay for DNA fragmentation and cell death. J Immunol Methods 145:185–192PubMedCrossRef Matzinger P (1991) The JAM test: a simple assay for DNA fragmentation and cell death. J Immunol Methods 145:185–192PubMedCrossRef
24.
go back to reference Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, Deleo AB, Lotze MT (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic anti-tumor immunity. Nat Med 1:1297–1302PubMedCrossRef Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, Deleo AB, Lotze MT (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic anti-tumor immunity. Nat Med 1:1297–1302PubMedCrossRef
25.
go back to reference Nabekura T, Otsu M, Nagasawa T, Nakauchi H, Onodera M (2006) Potent vaccine therapy with dendritic cells genetically modified by the gene-silencing-resistant retroviral vector GCDNsap. Mol Ther 13:301–309PubMedCrossRef Nabekura T, Otsu M, Nagasawa T, Nakauchi H, Onodera M (2006) Potent vaccine therapy with dendritic cells genetically modified by the gene-silencing-resistant retroviral vector GCDNsap. Mol Ther 13:301–309PubMedCrossRef
26.
go back to reference Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332PubMedCrossRef Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332PubMedCrossRef
27.
go back to reference Ory DS, Neugeboren BA, Mulligan RC (1996) A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci USA 93:11400–11406PubMedCrossRef Ory DS, Neugeboren BA, Mulligan RC (1996) A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci USA 93:11400–11406PubMedCrossRef
28.
go back to reference Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286PubMedCrossRef Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286PubMedCrossRef
29.
go back to reference Reeves ME, Royal RE, Lam JS, Rosenberg SA, Hwu P (1996) Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res 56:5672–5677PubMed Reeves ME, Royal RE, Lam JS, Rosenberg SA, Hwu P (1996) Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res 56:5672–5677PubMed
30.
go back to reference Rosenberg SA, Yang IC, Restifo MP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915PubMedCrossRef Rosenberg SA, Yang IC, Restifo MP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915PubMedCrossRef
31.
go back to reference Schneider U, Schwenk HU, Bornkamm G (1997) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 15:621–626 Schneider U, Schwenk HU, Bornkamm G (1997) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 15:621–626
32.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182PubMedCrossRef Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182PubMedCrossRef
33.
go back to reference Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792PubMedCrossRef Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792PubMedCrossRef
34.
go back to reference Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMedCrossRef Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296PubMedCrossRef
35.
go back to reference Suzuki A, Obi K, Urabe T, Hayakawa H, Yamada M, Kaneko S, Onodera M, Mizuno Y, Mochizuki H (2002) Feasibility of ex vivo gene therapy for neurological disorders using the new retroviral vector GCDNsap packaged in the vesicular stomatitis virus G protein. J Neurochem 82:953–960PubMedCrossRef Suzuki A, Obi K, Urabe T, Hayakawa H, Yamada M, Kaneko S, Onodera M, Mizuno Y, Mochizuki H (2002) Feasibility of ex vivo gene therapy for neurological disorders using the new retroviral vector GCDNsap packaged in the vesicular stomatitis virus G protein. J Neurochem 82:953–960PubMedCrossRef
36.
go back to reference Trempe GL (1976) Human breast cancer in culture. Recent Results Cancer Res 57:33–41PubMed Trempe GL (1976) Human breast cancer in culture. Recent Results Cancer Res 57:33–41PubMed
37.
go back to reference van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, Nusse R (1988) Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319:1239–1245PubMedCrossRef van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, Nusse R (1988) Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319:1239–1245PubMedCrossRef
38.
go back to reference Veerman MD, Heirman C, Meirvenne SV, Devos S, Corthals J, Moser M, Thielemans K (1999) Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity. J Immunol 162:144–151PubMed Veerman MD, Heirman C, Meirvenne SV, Devos S, Corthals J, Moser M, Thielemans K (1999) Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity. J Immunol 162:144–151PubMed
39.
go back to reference Wen Y, Min R, Tricot G, Barlogie B, Yi Q (2002) Tumor lysate–specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 99:3280–3285PubMedCrossRef Wen Y, Min R, Tricot G, Barlogie B, Yi Q (2002) Tumor lysate–specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 99:3280–3285PubMedCrossRef
Metadata
Title
An immunotherapy approach with dendritic cells genetically modified to express the tumor-associated antigen, HER2
Authors
Tsukasa Nabekura
Toshiro Nagasawa
Hiromitsu Nakauchi
Masafumi Onodera
Publication date
01-05-2008
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 5/2008
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-007-0399-8

Other articles of this Issue 5/2008

Cancer Immunology, Immunotherapy 5/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine