Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2015

Open Access 01-12-2015 | Research article

An end-to-end hybrid algorithm for automated medication discrepancy detection

Authors: Qi Li, Stephen Andrew Spooner, Megan Kaiser, Nataline Lingren, Jessica Robbins, Todd Lingren, Huaxiu Tang, Imre Solti, Yizhao Ni

Published in: BMC Medical Informatics and Decision Making | Issue 1/2015

Login to get access

Abstract

Background

In this study we implemented and developed state-of-the-art machine learning (ML) and natural language processing (NLP) technologies and built a computerized algorithm for medication reconciliation. Our specific aims are: (1) to develop a computerized algorithm for medication discrepancy detection between patients’ discharge prescriptions (structured data) and medications documented in free-text clinical notes (unstructured data); and (2) to assess the performance of the algorithm on real-world medication reconciliation data.

Methods

We collected clinical notes and discharge prescription lists for all 271 patients enrolled in the Complex Care Medical Home Program at Cincinnati Children’s Hospital Medical Center between 1/1/2010 and 12/31/2013. A double-annotated, gold-standard set of medication reconciliation data was created for this collection. We then developed a hybrid algorithm consisting of three processes: (1) a ML algorithm to identify medication entities from clinical notes, (2) a rule-based method to link medication names with their attributes, and (3) a NLP-based, hybrid approach to match medications with structured prescriptions in order to detect medication discrepancies. The performance was validated on the gold-standard medication reconciliation data, where precision (P), recall (R), F-value (F) and workload were assessed.

Results

The hybrid algorithm achieved 95.0%/91.6%/93.3% of P/R/F on medication entity detection and 98.7%/99.4%/99.1% of P/R/F on attribute linkage. The medication matching achieved 92.4%/90.7%/91.5% (P/R/F) on identifying matched medications in the gold-standard and 88.6%/82.5%/85.5% (P/R/F) on discrepant medications. By combining all processes, the algorithm achieved 92.4%/90.7%/91.5% (P/R/F) and 71.5%/65.2%/68.2% (P/R/F) on identifying the matched and the discrepant medications, respectively. The error analysis on algorithm outputs identified challenges to be addressed in order to improve medication discrepancy detection.

Conclusion

By leveraging ML and NLP technologies, an end-to-end, computerized algorithm achieves promising outcome in reconciling medications between clinical notes and discharge prescriptions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wong JD, Bajcar JM, Wong GG, Alibhai SM, Huh JH, Cesta A, et al. Medication reconciliation at hospital discharge: evaluating discrepancies. Ann Pharmacother. 2008;42(10):1373–9.CrossRefPubMed Wong JD, Bajcar JM, Wong GG, Alibhai SM, Huh JH, Cesta A, et al. Medication reconciliation at hospital discharge: evaluating discrepancies. Ann Pharmacother. 2008;42(10):1373–9.CrossRefPubMed
2.
go back to reference Cornu P, Steurbaut S, Leysen T, De Baere E, Ligneel C, Mets T, et al. Discrepancies in medication information for the primary care physician and the geriatric patient at discharge. Ann Pharmacother. 2012;46(7–8):983–90.CrossRefPubMed Cornu P, Steurbaut S, Leysen T, De Baere E, Ligneel C, Mets T, et al. Discrepancies in medication information for the primary care physician and the geriatric patient at discharge. Ann Pharmacother. 2012;46(7–8):983–90.CrossRefPubMed
3.
go back to reference Nickerson A, Mackinnon NJ, Roberts N, Saulnier L. Drug-therapy problems, inconsistencies and omissions identified during a medication reconciliation and seamless care service. Healthc Q. 2005;8(Spec No):65–72.CrossRefPubMed Nickerson A, Mackinnon NJ, Roberts N, Saulnier L. Drug-therapy problems, inconsistencies and omissions identified during a medication reconciliation and seamless care service. Healthc Q. 2005;8(Spec No):65–72.CrossRefPubMed
6.
go back to reference Bates DW, Boyle DL, Vander Vliet MB, Schneider J, Leape L. Relationship between medication errors and adverse drug events. J Gen Intern Med. 1995;10(4):199–205.CrossRefPubMed Bates DW, Boyle DL, Vander Vliet MB, Schneider J, Leape L. Relationship between medication errors and adverse drug events. J Gen Intern Med. 1995;10(4):199–205.CrossRefPubMed
7.
go back to reference Kohn LT, Corrigan JM, Donaldson MS. To err is Human: Building A Safer Health System. Washington, D.C.: National Academy Press; 2000. Kohn LT, Corrigan JM, Donaldson MS. To err is Human: Building A Safer Health System. Washington, D.C.: National Academy Press; 2000.
8.
go back to reference Leape LL, Brennan TA, Laird N, Lawthers AG, Localio AR, Barnes BA, et al. The nature of adverse events in hospitalized patients. N Engl J Med. 1991;324(6):377–84.CrossRefPubMed Leape LL, Brennan TA, Laird N, Lawthers AG, Localio AR, Barnes BA, et al. The nature of adverse events in hospitalized patients. N Engl J Med. 1991;324(6):377–84.CrossRefPubMed
9.
go back to reference Pronovost P, Weast B, Schwarz M, Wyskiel RM, Prow D, Milanovich SN, et al. Medication reconciliation: a practical tool to reduce the risk of medication errors. J Crit Care. 2003;18(4):201–5.CrossRefPubMed Pronovost P, Weast B, Schwarz M, Wyskiel RM, Prow D, Milanovich SN, et al. Medication reconciliation: a practical tool to reduce the risk of medication errors. J Crit Care. 2003;18(4):201–5.CrossRefPubMed
10.
go back to reference Mueller SK, Sponsler KC, Kripalani S, Schnipper JL. Hospital-based medication reconciliation practices: a systematic review. Arch Intern Med. 2012;172(4):1057–69.PubMedPubMedCentral Mueller SK, Sponsler KC, Kripalani S, Schnipper JL. Hospital-based medication reconciliation practices: a systematic review. Arch Intern Med. 2012;172(4):1057–69.PubMedPubMedCentral
11.
go back to reference Poon EG, Blumenfeld B, Hamann C, Turchin A, Grydon-Baker E, McCarthy PC, et al. Design and implementation of an application and associated services to support interdisciplinary medication reconciliation efforts at an integrated healthcare delivery network. J Am Med Inform Assoc. 2006;13(6):581–92.CrossRefPubMedPubMedCentral Poon EG, Blumenfeld B, Hamann C, Turchin A, Grydon-Baker E, McCarthy PC, et al. Design and implementation of an application and associated services to support interdisciplinary medication reconciliation efforts at an integrated healthcare delivery network. J Am Med Inform Assoc. 2006;13(6):581–92.CrossRefPubMedPubMedCentral
12.
go back to reference Plaisant C, Chao T, Wu J, Hettinger AZ, Herskovic JR, Johnson TR, et al. Twinlist: novel user interface designs for medication reconciliation. AMIA Annu Symp Proc. 2013;2013:150–9. Plaisant C, Chao T, Wu J, Hettinger AZ, Herskovic JR, Johnson TR, et al. Twinlist: novel user interface designs for medication reconciliation. AMIA Annu Symp Proc. 2013;2013:150–9.
13.
go back to reference Bergkvist A, Midlov P, Hoglund P, Larsson L, Bondesson A, Eriksson T. Improved quality in the hospital discharge summary reduces medication errors-LIMM: Landskrona integrated medicines management. Eur J Clin Pharmacol. 2009;65(10):1037–46.CrossRefPubMed Bergkvist A, Midlov P, Hoglund P, Larsson L, Bondesson A, Eriksson T. Improved quality in the hospital discharge summary reduces medication errors-LIMM: Landskrona integrated medicines management. Eur J Clin Pharmacol. 2009;65(10):1037–46.CrossRefPubMed
14.
go back to reference Clyne B, Bradley MC, Smith SM, et al. Effectiveness of medicines review with web-based pharmaceutical treatment algorithms in reducing potentially inappropriate prescribing in older people in primary care: a cluster randomized trial (OPTI-SCRIPT study protocol). Trials. 2013;14:72.CrossRefPubMedPubMedCentral Clyne B, Bradley MC, Smith SM, et al. Effectiveness of medicines review with web-based pharmaceutical treatment algorithms in reducing potentially inappropriate prescribing in older people in primary care: a cluster randomized trial (OPTI-SCRIPT study protocol). Trials. 2013;14:72.CrossRefPubMedPubMedCentral
15.
go back to reference Smith JD, Coleman EA, Min SJ. A new tool for identifying discrepancies in postacute medications for community-dwelling older adults. Am J Geriatr Pharmacother. 2004;2(2):141–7.CrossRefPubMed Smith JD, Coleman EA, Min SJ. A new tool for identifying discrepancies in postacute medications for community-dwelling older adults. Am J Geriatr Pharmacother. 2004;2(2):141–7.CrossRefPubMed
16.
go back to reference Varkey P, Cunningham J, Bisping S. Improving medication reconciliation in the outpatient setting. Jt Comm J Qual Patient Saf. 2007;33(5):286–92.CrossRefPubMed Varkey P, Cunningham J, Bisping S. Improving medication reconciliation in the outpatient setting. Jt Comm J Qual Patient Saf. 2007;33(5):286–92.CrossRefPubMed
17.
go back to reference Hassan S, Duncan GT, Neill DB, Padman R. Automatic detection of omissions in medication lists. J Am Med Inform Assoc. 2011;18(4):449–58.CrossRef Hassan S, Duncan GT, Neill DB, Padman R. Automatic detection of omissions in medication lists. J Am Med Inform Assoc. 2011;18(4):449–58.CrossRef
18.
go back to reference Silva P, Bernstam E, Markowitz E, Johnson TR, Zhang J, Herskovic JR. Automated medication reconciliation and complexity of care transitions. AMIA Annu Symp Proc. 2011;2011:1252–60.PubMed Silva P, Bernstam E, Markowitz E, Johnson TR, Zhang J, Herskovic JR. Automated medication reconciliation and complexity of care transitions. AMIA Annu Symp Proc. 2011;2011:1252–60.PubMed
19.
go back to reference Schnipper J, Liang C, Hamann C, Karson AS, Palchuk MB, McCarthy PC, et al. Development of a tool within the electronic medical record to facilitate medication reconciliation after hospital discharge. J Am Med Inform Assoc. 2011;18(3):309–13.CrossRefPubMedPubMedCentral Schnipper J, Liang C, Hamann C, Karson AS, Palchuk MB, McCarthy PC, et al. Development of a tool within the electronic medical record to facilitate medication reconciliation after hospital discharge. J Am Med Inform Assoc. 2011;18(3):309–13.CrossRefPubMedPubMedCentral
20.
go back to reference Cimino JJ, Bright TJ, Li J. Medication reconciliation using natural language processing and controlled terminologies. Stud Health Technol Inform. 2007;129(Pt 1):679–83.PubMed Cimino JJ, Bright TJ, Li J. Medication reconciliation using natural language processing and controlled terminologies. Stud Health Technol Inform. 2007;129(Pt 1):679–83.PubMed
21.
go back to reference Nassaralla CL, Naessens JM, Chaudhry R, Hansen MA, Scheitel SM. Implementation of a medication reconciliation process in an ambulatory internal medicine clinic. Qual Saf Health Care. 2007;16(2):90–4.CrossRefPubMedPubMedCentral Nassaralla CL, Naessens JM, Chaudhry R, Hansen MA, Scheitel SM. Implementation of a medication reconciliation process in an ambulatory internal medicine clinic. Qual Saf Health Care. 2007;16(2):90–4.CrossRefPubMedPubMedCentral
22.
go back to reference Van Sluisveld N, Zegers M, Natsch S, Wollersheim H. Medication reconciliation at hospital admission and discharge: insufficient knowlege, unclear task reallocation and lack of collaboration as major barriers to medication safety. BMC Health Serv Res. 2012;12:170.CrossRefPubMedPubMedCentral Van Sluisveld N, Zegers M, Natsch S, Wollersheim H. Medication reconciliation at hospital admission and discharge: insufficient knowlege, unclear task reallocation and lack of collaboration as major barriers to medication safety. BMC Health Serv Res. 2012;12:170.CrossRefPubMedPubMedCentral
23.
go back to reference Fernandes O. Medication reconciliation in the hospital: what, why, where, when, who and how. Healthc Q. 2012;(Spec No):42–9. Fernandes O. Medication reconciliation in the hospital: what, why, where, when, who and how. Healthc Q. 2012;(Spec No):42–9.
24.
go back to reference Chhabra PT, Rattinger GB, Dutcher SK, Hare ME, Parsons KL, Zuckerman IH. Medication reconciliation during the transition to and from long-term care settings: a systematic review. Res Social Adm Pharm. 2012;8(1):60–75.CrossRefPubMed Chhabra PT, Rattinger GB, Dutcher SK, Hare ME, Parsons KL, Zuckerman IH. Medication reconciliation during the transition to and from long-term care settings: a systematic review. Res Social Adm Pharm. 2012;8(1):60–75.CrossRefPubMed
25.
go back to reference Pippins JR, Gandhi TK, Hamann C, Ndumele CD, Labonville SA, Diedrichsen EK, et al. Classifying and predicting errors of inpatient medication reconciliation. J Gen Intern Med. 2008;23(9):1414–22.CrossRefPubMedPubMedCentral Pippins JR, Gandhi TK, Hamann C, Ndumele CD, Labonville SA, Diedrichsen EK, et al. Classifying and predicting errors of inpatient medication reconciliation. J Gen Intern Med. 2008;23(9):1414–22.CrossRefPubMedPubMedCentral
26.
go back to reference Greenwald JL, Halasyamani L, Greene J, LaCivita C, Stucky E, Benjamin B, et al. Making inpatient medication reconciliation patient centered, clinically relevant and implementable: a consensus statement on key principles and necessary first steps. J Hosp Med. 2010;5(8):477–85.CrossRefPubMed Greenwald JL, Halasyamani L, Greene J, LaCivita C, Stucky E, Benjamin B, et al. Making inpatient medication reconciliation patient centered, clinically relevant and implementable: a consensus statement on key principles and necessary first steps. J Hosp Med. 2010;5(8):477–85.CrossRefPubMed
27.
go back to reference Boockvar KS, Santos SL, Kushniruk A, Johnson C, Nebeker JR. Medication reconciliation: barriers and facilitators from the perspectives of resident physicians and pharmacists. J Hosp Med. 2011;6(6):329–37.CrossRefPubMed Boockvar KS, Santos SL, Kushniruk A, Johnson C, Nebeker JR. Medication reconciliation: barriers and facilitators from the perspectives of resident physicians and pharmacists. J Hosp Med. 2011;6(6):329–37.CrossRefPubMed
29.
go back to reference Zhou L, Mahoney LM, Shakurova A, Goss F, Chang FY, Bates DW, et al. How many medication orders are entered through free-text in EHRs? – A study on hypoglycemic agents. AMIA Annu Symp Proc. 2012;2012:1079–88.PubMedPubMedCentral Zhou L, Mahoney LM, Shakurova A, Goss F, Chang FY, Bates DW, et al. How many medication orders are entered through free-text in EHRs? – A study on hypoglycemic agents. AMIA Annu Symp Proc. 2012;2012:1079–88.PubMedPubMedCentral
32.
go back to reference Ogren PV. Knowtator: a protégé plug-in for annotated corpus construction, In proc. of the 2006 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language, 2006. 2006. p. 273–5. Ogren PV. Knowtator: a protégé plug-in for annotated corpus construction, In proc. of the 2006 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language, 2006. 2006. p. 273–5.
33.
go back to reference Deleger L, Li Q, Lingren T, Kaiser M, Molnar K, Stoutenborough L, et al. Building gold standard corpora for medical natural language processing tasks. AMIA Annu Symp Proc. 2012;2012:144–53.PubMedPubMedCentral Deleger L, Li Q, Lingren T, Kaiser M, Molnar K, Stoutenborough L, et al. Building gold standard corpora for medical natural language processing tasks. AMIA Annu Symp Proc. 2012;2012:144–53.PubMedPubMedCentral
34.
go back to reference Ogren P, Guergana S, Christopher C. Constructing evaluation corpora for automated clinical named entity recognition, In Proc. of the Sixth International Conference on Language Resources and Evaluation (LREC). 2008. Ogren P, Guergana S, Christopher C. Constructing evaluation corpora for automated clinical named entity recognition, In Proc. of the Sixth International Conference on Language Resources and Evaluation (LREC). 2008.
36.
go back to reference Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data, In proc. of 18th International Conference on Machine Learning. 2001. Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data, In proc. of 18th International Conference on Machine Learning. 2001.
37.
go back to reference Li Q, Zhai H, Deleger L, Lingren T, Kaiser M, Stoutenborough L, et al. A sequence labeling approach to link medications and their attributes in clinical notes and clinical trial announcements for information extraction. J Am Med Inform Assoc. 2013;20(5):915–21.CrossRefPubMed Li Q, Zhai H, Deleger L, Lingren T, Kaiser M, Stoutenborough L, et al. A sequence labeling approach to link medications and their attributes in clinical notes and clinical trial announcements for information extraction. J Am Med Inform Assoc. 2013;20(5):915–21.CrossRefPubMed
38.
go back to reference Ye Y, Tsui F, Wagner M, Espino J, Li Q. Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. J Am Med Inform Assoc. 2014;21(5):815–23.CrossRefPubMedPubMedCentral Ye Y, Tsui F, Wagner M, Espino J, Li Q. Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. J Am Med Inform Assoc. 2014;21(5):815–23.CrossRefPubMedPubMedCentral
39.
go back to reference Li Q, Deleger L, Lingren T, Zhai H, Kaiser M, Stoutenborough L, et al. Mining FDA drug labels for medical conditions. BMC Med Inform Decis Mak. 2013;13:53.CrossRefPubMedPubMedCentral Li Q, Deleger L, Lingren T, Zhai H, Kaiser M, Stoutenborough L, et al. Mining FDA drug labels for medical conditions. BMC Med Inform Decis Mak. 2013;13:53.CrossRefPubMedPubMedCentral
40.
go back to reference Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.CrossRefPubMedPubMedCentral Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.CrossRefPubMedPubMedCentral
41.
go back to reference Ni Y, Kennebeck S, Dexheimer JW, McAneney CM, Tang H, Lingren T, et al. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. J Am Med Inform Assoc. 2015;22(1):166–78.CrossRefPubMed Ni Y, Kennebeck S, Dexheimer JW, McAneney CM, Tang H, Lingren T, et al. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. J Am Med Inform Assoc. 2015;22(1):166–78.CrossRefPubMed
Metadata
Title
An end-to-end hybrid algorithm for automated medication discrepancy detection
Authors
Qi Li
Stephen Andrew Spooner
Megan Kaiser
Nataline Lingren
Jessica Robbins
Todd Lingren
Huaxiu Tang
Imre Solti
Yizhao Ni
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2015
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-015-0160-8

Other articles of this Issue 1/2015

BMC Medical Informatics and Decision Making 1/2015 Go to the issue