Skip to main content
Top
Published in: Drug Safety 4/2018

01-04-2018 | Original Research Article

An Automated System Combining Safety Signal Detection and Prioritization from Healthcare Databases: A Pilot Study

Authors: Mickael Arnaud, Bernard Bégaud, Frantz Thiessard, Quentin Jarrion, Julien Bezin, Antoine Pariente, Francesco Salvo

Published in: Drug Safety | Issue 4/2018

Login to get access

Abstract

Introduction

Signal detection from healthcare databases is possible, but is not yet used for routine surveillance of drug safety. One challenge is to develop methods for selecting signals that should be assessed with priority.

Aim

The aim of this study was to develop an automated system combining safety signal detection and prioritization from healthcare databases and applicable to drugs used in chronic diseases.

Methods

Patients present in the French EGB healthcare database for at least 1 year between 2005 and 2015 were considered. Noninsulin glucose-lowering drugs (NIGLDs) were selected as a case study, and hospitalization data were used to select important medical events (IME). Signal detection was performed quarterly from 2008 to 2015 using sequence symmetry analysis. NIGLD/IME associations were screened if one or more exposed case was identified in the quarter, and three or more exposed cases were identified in the population at the date of screening. Detected signals were prioritized using the Longitudinal-SNIP (L-SNIP) algorithm based on strength (S), novelty (N), and potential impact of signal (I), and pattern of drug use (P). Signals scored in the top 10% were identified as of high priority. A reference set was built based on NIGLD summaries of product characteristics (SPCs) to compute the performance of the developed system.

Results

A total of 815 associations were screened and 241 (29.6%) were detected as signals; among these, 58 (24.1%) were prioritized. The performance for signal detection was sensitivity = 47%; specificity = 80%; positive predictive value (PPV) 33%; negative predictive value = 82%. The use of the L-SNIP algorithm increased the early identification of positive controls, restricted to those mentioned in the SPCs after 2008: PPV = 100% versus PPV = 14% with its non-use. The system revealed a strong new signal with dipeptidylpeptidase-4 inhibitors and venous thromboembolism.

Conclusion

The developed system seems promising for the routine use of healthcare data for safety surveillance of drugs used in chronic diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2001;286:954–9.CrossRefPubMed Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2001;286:954–9.CrossRefPubMed
2.
go back to reference Lévesque LE, Brophy JM, Zhang B. The risk for myocardial infarction with cyclooxygenase-2 inhibitors: a population study of elderly adults. Ann Intern Med. 2005;142:481.CrossRefPubMed Lévesque LE, Brophy JM, Zhang B. The risk for myocardial infarction with cyclooxygenase-2 inhibitors: a population study of elderly adults. Ann Intern Med. 2005;142:481.CrossRefPubMed
3.
go back to reference Laheij RJ, Sturkenboom MC, Hassing R-J, Dieleman J, Stricker BH, Jansen JB. Risk of community-acquired pneumonia and use of gastric acid–suppressive drugs. JAMA. 2004;292:1955–60.CrossRefPubMed Laheij RJ, Sturkenboom MC, Hassing R-J, Dieleman J, Stricker BH, Jansen JB. Risk of community-acquired pneumonia and use of gastric acid–suppressive drugs. JAMA. 2004;292:1955–60.CrossRefPubMed
4.
go back to reference Johnstone J, Nerenberg K, Loeb M. Meta-analysis: proton pump inhibitor use and the risk of community-acquired pneumonia. Aliment Pharmacol Ther. 2010;31:1165–77.CrossRefPubMed Johnstone J, Nerenberg K, Loeb M. Meta-analysis: proton pump inhibitor use and the risk of community-acquired pneumonia. Aliment Pharmacol Ther. 2010;31:1165–77.CrossRefPubMed
5.
go back to reference Yang Y-X, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296:2947–53.CrossRefPubMed Yang Y-X, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296:2947–53.CrossRefPubMed
6.
go back to reference Vestergaard P, Rejnmark L, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int. 2006;79:76–83.CrossRefPubMed Vestergaard P, Rejnmark L, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int. 2006;79:76–83.CrossRefPubMed
7.
go back to reference Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD. Use of proton pump inhibitors and risk of osteoporosis-related fractures. Can Med Assoc J. 2008;179:319–26.CrossRef Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD. Use of proton pump inhibitors and risk of osteoporosis-related fractures. Can Med Assoc J. 2008;179:319–26.CrossRef
8.
go back to reference Lipscombe LL, Gomes T, Lévesque LE, Hux JE, Juurlink DN, Alter DA. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298:2634–43.CrossRefPubMed Lipscombe LL, Gomes T, Lévesque LE, Hux JE, Juurlink DN, Alter DA. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298:2634–43.CrossRefPubMed
9.
go back to reference Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.CrossRefPubMed Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.CrossRefPubMed
10.
go back to reference Neumann A, Weill A, Ricordeau P, Fagot JP, Alla F, Allemand H. Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia. 2012;55:1953–62.CrossRefPubMedPubMedCentral Neumann A, Weill A, Ricordeau P, Fagot JP, Alla F, Allemand H. Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia. 2012;55:1953–62.CrossRefPubMedPubMedCentral
11.
go back to reference Tuccori M, Filion KB, Yin H, Yu OH, Platt RW, Azoulay L. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ. 2016;352:i1541.CrossRefPubMedPubMedCentral Tuccori M, Filion KB, Yin H, Yu OH, Platt RW, Azoulay L. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ. 2016;352:i1541.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Coloma PM, Schuemie MJ, Trifirò G, Gini R, Herings R, Hippisley-Cox J, et al. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug Saf. 2011;20:1–11.CrossRefPubMed Coloma PM, Schuemie MJ, Trifirò G, Gini R, Herings R, Hippisley-Cox J, et al. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug Saf. 2011;20:1–11.CrossRefPubMed
14.
go back to reference Wisniewski AFZ, Bate A, Bousquet C, Brueckner A, Candore G, Juhlin K, et al. Good signal detection practices: evidence from IMI PROTECT. Drug Saf. 2016;39:469–90.CrossRefPubMedPubMedCentral Wisniewski AFZ, Bate A, Bousquet C, Brueckner A, Candore G, Juhlin K, et al. Good signal detection practices: evidence from IMI PROTECT. Drug Saf. 2016;39:469–90.CrossRefPubMedPubMedCentral
15.
go back to reference Platt R, Carnahan RM, Brown JS, Chrischilles E, Curtis LH, Hennessy S, et al. The U.S. Food and Drug Administration’s Mini-Sentinel program: status and direction. Pharmacoepidemiol Drug Saf. 2012;21:1–8.PubMed Platt R, Carnahan RM, Brown JS, Chrischilles E, Curtis LH, Hennessy S, et al. The U.S. Food and Drug Administration’s Mini-Sentinel program: status and direction. Pharmacoepidemiol Drug Saf. 2012;21:1–8.PubMed
16.
go back to reference Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, et al. Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership. Ann Intern Med. 2010;153:600–6.CrossRefPubMed Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, et al. Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership. Ann Intern Med. 2010;153:600–6.CrossRefPubMed
17.
go back to reference Andersen M, Bergman U, Choi N-K, Gerhard T, Huang C, Jalbert J, et al. The Asian Pharmacoepidemiology Network (AsPEN): promoting multi-national collaboration for pharmacoepidemiologic research in Asia. Pharmacoepidemiol Drug Saf. 2013;22:700–4.CrossRefPubMed Andersen M, Bergman U, Choi N-K, Gerhard T, Huang C, Jalbert J, et al. The Asian Pharmacoepidemiology Network (AsPEN): promoting multi-national collaboration for pharmacoepidemiologic research in Asia. Pharmacoepidemiol Drug Saf. 2013;22:700–4.CrossRefPubMed
18.
go back to reference Ryan PB, Stang PE, Overhage JM, Suchard MA, Hartzema AG, DuMouchel W, et al. A comparison of the empirical performance of methods for a risk identification system. Drug Saf. 2013;36:143–58.CrossRef Ryan PB, Stang PE, Overhage JM, Suchard MA, Hartzema AG, DuMouchel W, et al. A comparison of the empirical performance of methods for a risk identification system. Drug Saf. 2013;36:143–58.CrossRef
19.
go back to reference Schuemie MJ, Gini R, Coloma PM, Straatman H, Herings RMC, Pedersen L, et al. Replication of the OMOP experiment in Europe: evaluating methods for risk identification in electronic health record databases. Drug Saf. 2013;36:159–69.CrossRef Schuemie MJ, Gini R, Coloma PM, Straatman H, Herings RMC, Pedersen L, et al. Replication of the OMOP experiment in Europe: evaluating methods for risk identification in electronic health record databases. Drug Saf. 2013;36:159–69.CrossRef
20.
go back to reference Pratt N, Andersen M, Bergman U, Choi N-K, Gerhard T, Huang C, et al. Multi-country rapid adverse drug event assessment: the Asian Pharmacoepidemiology Network (AsPEN) antipsychotic and acute hyperglycaemia study. Pharmacoepidemiol Drug Saf. 2013;22:915–24.PubMed Pratt N, Andersen M, Bergman U, Choi N-K, Gerhard T, Huang C, et al. Multi-country rapid adverse drug event assessment: the Asian Pharmacoepidemiology Network (AsPEN) antipsychotic and acute hyperglycaemia study. Pharmacoepidemiol Drug Saf. 2013;22:915–24.PubMed
21.
go back to reference Kulldorff M, Dashevsky I, Avery TR, Chan AK, Davis RL, Graham D, et al. Drug safety data mining with a tree-based scan statistic. Pharmacoepidemiol Drug Saf. 2013;22:517–23.CrossRefPubMed Kulldorff M, Dashevsky I, Avery TR, Chan AK, Davis RL, Graham D, et al. Drug safety data mining with a tree-based scan statistic. Pharmacoepidemiol Drug Saf. 2013;22:517–23.CrossRefPubMed
22.
23.
go back to reference Waller P, Heeley E, Moseley J. Impact analysis of signals detected from spontaneous adverse drug reaction reporting data. Drug Saf. 2005;28:843–50.CrossRefPubMed Waller P, Heeley E, Moseley J. Impact analysis of signals detected from spontaneous adverse drug reaction reporting data. Drug Saf. 2005;28:843–50.CrossRefPubMed
24.
go back to reference Seabroke S, Wise L, Waller P. Development of a novel regulatory pharmacovigilance prioritisation system: an evaluation of its performance at the UK medicines and healthcare products regulatory agency. Drug Saf. 2013;36:1025–32.CrossRefPubMed Seabroke S, Wise L, Waller P. Development of a novel regulatory pharmacovigilance prioritisation system: an evaluation of its performance at the UK medicines and healthcare products regulatory agency. Drug Saf. 2013;36:1025–32.CrossRefPubMed
25.
go back to reference Meyboom RH, Lindquist M, Egberts AC, Edwards IR. Signal selection and follow-up in pharmacovigilance. Drug Saf. 2002;25:459–65.CrossRefPubMed Meyboom RH, Lindquist M, Egberts AC, Edwards IR. Signal selection and follow-up in pharmacovigilance. Drug Saf. 2002;25:459–65.CrossRefPubMed
26.
go back to reference Ståhl M, Lindquist M, Edwards IR, Brown EG. Introducing triage logic as a new strategy for the detection of signals in the WHO Drug Monitoring Database. Pharmacoepidemiol Drug Saf. 2004;13:355–63.CrossRefPubMed Ståhl M, Lindquist M, Edwards IR, Brown EG. Introducing triage logic as a new strategy for the detection of signals in the WHO Drug Monitoring Database. Pharmacoepidemiol Drug Saf. 2004;13:355–63.CrossRefPubMed
27.
go back to reference Lindquist M. Use of triage strategies in the WHO signal-detection process. Drug Saf. 2007;30:635–7.CrossRefPubMed Lindquist M. Use of triage strategies in the WHO signal-detection process. Drug Saf. 2007;30:635–7.CrossRefPubMed
28.
go back to reference Caster O, Juhlin K, Watson S, Norén GN. Improved statistical signal detection in pharmacovigilance by combining multiple strength-of-evidence aspects in vigiRank: retrospective evaluation against emerging safety signals. Drug Saf. 2014;37:617–28.CrossRefPubMedPubMedCentral Caster O, Juhlin K, Watson S, Norén GN. Improved statistical signal detection in pharmacovigilance by combining multiple strength-of-evidence aspects in vigiRank: retrospective evaluation against emerging safety signals. Drug Saf. 2014;37:617–28.CrossRefPubMedPubMedCentral
29.
go back to reference Van Puijenbroek EP, Van Grootheest K, Diemont WL, Leufkens HG, Egberts AC. Determinants of signal selection in a spontaneous reporting system for adverse drug reactions. Br J Clin Pharmacol. 2001;52:579–86.CrossRefPubMedPubMedCentral Van Puijenbroek EP, Van Grootheest K, Diemont WL, Leufkens HG, Egberts AC. Determinants of signal selection in a spontaneous reporting system for adverse drug reactions. Br J Clin Pharmacol. 2001;52:579–86.CrossRefPubMedPubMedCentral
30.
go back to reference Levitan B, Yee CL, Russo L, Bayney R, Thomas AP, Klincewicz SL. A model for decision support in signal triage. Drug Saf. 2008;31:727–35.CrossRefPubMed Levitan B, Yee CL, Russo L, Bayney R, Thomas AP, Klincewicz SL. A model for decision support in signal triage. Drug Saf. 2008;31:727–35.CrossRefPubMed
31.
go back to reference Jamekornkul C, Chaisumritchoke ST. Developing a signal triage algorithm for Thai national adverse drug reaction database. Thai J Pharm Sci. 2016;40(3):153–7. Jamekornkul C, Chaisumritchoke ST. Developing a signal triage algorithm for Thai national adverse drug reaction database. Thai J Pharm Sci. 2016;40(3):153–7.
32.
go back to reference Salvo F, Raschi E, Moretti U, Chiarolanza A, Fourrier-Réglat A, Moore N, et al. Pharmacological prioritisation of signals of disproportionate reporting: proposal of an algorithm and pilot evaluation. Eur J Clin Pharmacol. 2014;70:617–25.CrossRefPubMed Salvo F, Raschi E, Moretti U, Chiarolanza A, Fourrier-Réglat A, Moore N, et al. Pharmacological prioritisation of signals of disproportionate reporting: proposal of an algorithm and pilot evaluation. Eur J Clin Pharmacol. 2014;70:617–25.CrossRefPubMed
35.
go back to reference Sottosanti L, Ferrazin F. Italian pharmacovigilance system. Manns Pharmacovigil. 3rd ed. Chichester: Wiley; 2014. Sottosanti L, Ferrazin F. Italian pharmacovigilance system. Manns Pharmacovigil. 3rd ed. Chichester: Wiley; 2014.
37.
go back to reference Bezin J, Duong M, Lassalle R, Droz C, Pariente A, Blin P, et al. The national healthcare system claims databases in France, SNIIRAM and EGB: Powerful tools for pharmacoepidemiology. Pharmacoepidemiol. Drug Saf. 2017. http://doi.wiley.com/10.1002/pds.4233. Accessed 2 Jun 2017. Bezin J, Duong M, Lassalle R, Droz C, Pariente A, Blin P, et al. The national healthcare system claims databases in France, SNIIRAM and EGB: Powerful tools for pharmacoepidemiology. Pharmacoepidemiol. Drug Saf. 2017. http://​doi.​wiley.​com/​10.​1002/​pds.​4233. Accessed 2 Jun 2017.
39.
go back to reference Tsiropoulos I, Andersen M, Hallas J. Adverse events with use of antiepileptic drugs: a prescription and event symmetry analysis. Pharmacoepidemiol Drug Saf. 2009;18:483–91.CrossRefPubMed Tsiropoulos I, Andersen M, Hallas J. Adverse events with use of antiepileptic drugs: a prescription and event symmetry analysis. Pharmacoepidemiol Drug Saf. 2009;18:483–91.CrossRefPubMed
40.
go back to reference Wahab IA, Pratt NL, Wiese MD, Kalisch LM, Roughead EE. The validity of sequence symmetry analysis (SSA) for adverse drug reaction signal detection. Pharmacoepidemiol Drug Saf. 2013;22:496–502.CrossRefPubMed Wahab IA, Pratt NL, Wiese MD, Kalisch LM, Roughead EE. The validity of sequence symmetry analysis (SSA) for adverse drug reaction signal detection. Pharmacoepidemiol Drug Saf. 2013;22:496–502.CrossRefPubMed
41.
go back to reference Arnaud M, Bégaud B, Thurin N, Moore N, Pariente A, Salvo F. Methods for safety signal detection in healthcare databases: a literature review. Expert Opin Drug Saf. 2017;16:721–32.CrossRefPubMed Arnaud M, Bégaud B, Thurin N, Moore N, Pariente A, Salvo F. Methods for safety signal detection in healthcare databases: a literature review. Expert Opin Drug Saf. 2017;16:721–32.CrossRefPubMed
42.
go back to reference Petri H, De Vet HCW, Naus J, Urquhart J. Prescription sequence analysis: a new and fast method for assessing certain adverse reactions of prescription drugs in large populations. Stat Med. 1988;7:1171–5.CrossRefPubMed Petri H, De Vet HCW, Naus J, Urquhart J. Prescription sequence analysis: a new and fast method for assessing certain adverse reactions of prescription drugs in large populations. Stat Med. 1988;7:1171–5.CrossRefPubMed
43.
go back to reference Hallas J. Evidence of depression provoked by cardiovascular medication: a prescription sequence symmetry analysis. Epidemiology. 1996;7:478–84.CrossRefPubMed Hallas J. Evidence of depression provoked by cardiovascular medication: a prescription sequence symmetry analysis. Epidemiology. 1996;7:478–84.CrossRefPubMed
44.
go back to reference Coloma PM, Trifirò G, Schuemie MJ, Gini R, Herings R, Hippisley-Cox J, et al. Electronic healthcare databases for active drug safety surveillance: is there enough leverage? Pharmacoepidemiol Drug Saf. 2012;21:611–21.CrossRefPubMed Coloma PM, Trifirò G, Schuemie MJ, Gini R, Herings R, Hippisley-Cox J, et al. Electronic healthcare databases for active drug safety surveillance: is there enough leverage? Pharmacoepidemiol Drug Saf. 2012;21:611–21.CrossRefPubMed
45.
go back to reference Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. Small-sample precision of ROC-related estimates. Bioinformatics. 2010;26:822–30.CrossRefPubMed Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER. Small-sample precision of ROC-related estimates. Bioinformatics. 2010;26:822–30.CrossRefPubMed
46.
go back to reference Lerch M, Nowicki P, Manlik K, Wirsching G. Statistical signal detection as a routine pharmacovigilance practice: effects of periodicity and resignalling criteria on quality and workload. Drug Saf. 2015;38:1219–31.CrossRefPubMedPubMedCentral Lerch M, Nowicki P, Manlik K, Wirsching G. Statistical signal detection as a routine pharmacovigilance practice: effects of periodicity and resignalling criteria on quality and workload. Drug Saf. 2015;38:1219–31.CrossRefPubMedPubMedCentral
47.
go back to reference Avillach P, Coloma PM, Gini R, Schuemie M, Mougin F, Dufour J-C, et al. Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU-ADR project. J Am Med Inform Assoc. 2012;20:184–92.CrossRefPubMedPubMedCentral Avillach P, Coloma PM, Gini R, Schuemie M, Mougin F, Dufour J-C, et al. Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU-ADR project. J Am Med Inform Assoc. 2012;20:184–92.CrossRefPubMedPubMedCentral
48.
go back to reference Cutrona SL, Toh S, Iyer A, Foy S, Cavagnaro E, Forrow S, et al. Design for validation of acute myocardial infarction cases in Mini-Sentinel. Pharmacoepidemiol Drug Saf. 2012;21:274–81.CrossRefPubMedPubMedCentral Cutrona SL, Toh S, Iyer A, Foy S, Cavagnaro E, Forrow S, et al. Design for validation of acute myocardial infarction cases in Mini-Sentinel. Pharmacoepidemiol Drug Saf. 2012;21:274–81.CrossRefPubMedPubMedCentral
49.
go back to reference Trifiro G, Pariente A, Coloma PM, Kors JA, Polimeni G, Miremont-Salamé G, et al. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor? Pharmacoepidemiol Drug Saf. 2009;18:1176–84.CrossRefPubMed Trifiro G, Pariente A, Coloma PM, Kors JA, Polimeni G, Miremont-Salamé G, et al. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor? Pharmacoepidemiol Drug Saf. 2009;18:1176–84.CrossRefPubMed
50.
go back to reference Arnaud M, Bezin J, Bégaud B, Pariente A, Salvo F. Trends in the incidence of use of noninsulin glucose-lowering drugs between 2006 and 2013 in France. Fundam Clin Pharmacol. 2017;31(6):663–75. Arnaud M, Bezin J, Bégaud B, Pariente A, Salvo F. Trends in the incidence of use of noninsulin glucose-lowering drugs between 2006 and 2013 in France. Fundam Clin Pharmacol. 2017;31(6):663–75.
51.
go back to reference Hauben M, Aronson JK. Defining “signal” and its subtypes in pharmacovigilance based on a systematic review of previous definitions. Drug Saf. 2009;32:99–110.CrossRefPubMed Hauben M, Aronson JK. Defining “signal” and its subtypes in pharmacovigilance based on a systematic review of previous definitions. Drug Saf. 2009;32:99–110.CrossRefPubMed
Metadata
Title
An Automated System Combining Safety Signal Detection and Prioritization from Healthcare Databases: A Pilot Study
Authors
Mickael Arnaud
Bernard Bégaud
Frantz Thiessard
Quentin Jarrion
Julien Bezin
Antoine Pariente
Francesco Salvo
Publication date
01-04-2018
Publisher
Springer International Publishing
Published in
Drug Safety / Issue 4/2018
Print ISSN: 0114-5916
Electronic ISSN: 1179-1942
DOI
https://doi.org/10.1007/s40264-017-0618-y

Other articles of this Issue 4/2018

Drug Safety 4/2018 Go to the issue