Skip to main content
Top
Published in: Current Treatment Options in Neurology 3/2024

30-01-2024 | Amyotrophic Lateral Sclerosis

Translating the ALS Genetic Revolution into Therapies: A Review

Authors: Christine Meadows, MD, Naraharisetty Anita Rau, MD, Warda Faridi, MD, Cindy V. Ly, MD, PhD

Published in: Current Treatment Options in Neurology | Issue 3/2024

Login to get access

Abstract

Purpose of Review

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing weakness, respiratory failure, and death within 3 to 5 years. Approximately, 10% of ALS cases have a genetic etiology (familial/fALS). The etiology of the remaining 90% of sporadic ALS (sALS) cases remains unknown. In this review, we provide an overview of approved and investigational therapies for fALS, as well as genetically informed therapeutic advances aimed at the larger sALS population.

Recent Findings

Antisense oligonucleotides (ASOs) are a promising strategy to treat toxic gain-of-function mutations underlying most forms of fALS. We discuss the recent approval of tofersen for ALS caused by mutation in SOD1. We also discuss progress in the development of therapies for fALS associated with C9orf72 hexanucleotide repeat expansions (C9orf72) and fused in sarcoma (FUS) mutations. Finally, we will discuss the rationale and status of molecular therapies for sALS targeting mediators of TDP-43 pathogenesis: ataxin-2 (ATXN2) and stathmin-2 (STMN2).

Summary

Advances in understanding the genetics of ALS have propelled the development of promising gene therapies. Lessons learned from tofersen continue to inform clinical trial design for a growing pipeline of therapies directed towards other fALS subtypes and sALS.
Literature
1.
go back to reference • Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet. 2023;24(9):642–58 This review highlights recent discoveries in ALS, including new mutations, gene variability and gene-environment interactions, and provides a summary of the current status of ALS therapies developed over the past 30 years.PubMedCrossRef • Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet. 2023;24(9):642–58 This review highlights recent discoveries in ALS, including new mutations, gene variability and gene-environment interactions, and provides a summary of the current status of ALS therapies developed over the past 30 years.PubMedCrossRef
2.
go back to reference • Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther. 2021;29(12):3345–58 This review examines the current landscape of ALS directed gene therapy focusing on various methodologies such as ASO, RNA interference, CRISPR, AAV-mediated trophic support, and antibody-based techniques, and their applications in both genetic and sporadic cases.PubMedPubMedCentralCrossRef • Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther. 2021;29(12):3345–58 This review examines the current landscape of ALS directed gene therapy focusing on various methodologies such as ASO, RNA interference, CRISPR, AAV-mediated trophic support, and antibody-based techniques, and their applications in both genetic and sporadic cases.PubMedPubMedCentralCrossRef
3.
go back to reference Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med. 1994;330(9):585–91.PubMedCrossRef Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med. 1994;330(9):585–91.PubMedCrossRef
4.
go back to reference • Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate–taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383(10):919–30 This article provides evidence that sodium phenylbutyrate–taurursodiol results in slower functional decline than placebo over a period of 24 weeks as measured by the ALSFRS-R score.PubMedPubMedCentralCrossRef • Paganoni S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, et al. Trial of sodium phenylbutyrate–taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020;383(10):919–30 This article provides evidence that sodium phenylbutyrate–taurursodiol results in slower functional decline than placebo over a period of 24 weeks as measured by the ALSFRS-R score.PubMedPubMedCentralCrossRef
6.
go back to reference • Boros BD, Schoch KM, Kreple CJ, Miller TM. Antisense oligonucleotides for the study and treatment of ALS. Neurotherapeutics. 2022;19(4):1145–58 This review provides a thorough overview of ASO therapies in ALS detailing their progression from preclinical development to early clinical trials.PubMedPubMedCentralCrossRef • Boros BD, Schoch KM, Kreple CJ, Miller TM. Antisense oligonucleotides for the study and treatment of ALS. Neurotherapeutics. 2022;19(4):1145–58 This review provides a thorough overview of ASO therapies in ALS detailing their progression from preclinical development to early clinical trials.PubMedPubMedCentralCrossRef
7.
go back to reference • Ruf WP, Boros M, Freischmidt A, Brenner D, Grozdanov V, De Meirelles J, et al. Spectrum and frequency of genetic variants in sporadic amyotrophic lateral sclerosis. Brain Commun. 2023;5(3):fcad152 This article provides results of a cohort study done to characterize the mutational landscape of sporadic ALS to potentially broaden the eligibility for gene-specific therapies in future.PubMedPubMedCentralCrossRef • Ruf WP, Boros M, Freischmidt A, Brenner D, Grozdanov V, De Meirelles J, et al. Spectrum and frequency of genetic variants in sporadic amyotrophic lateral sclerosis. Brain Commun. 2023;5(3):fcad152 This article provides results of a cohort study done to characterize the mutational landscape of sporadic ALS to potentially broaden the eligibility for gene-specific therapies in future.PubMedPubMedCentralCrossRef
8.
go back to reference • van Daele SH, Moisse M, Van Vugt JJFA, Zwamborn RAJ, Van Der Spek R, Van Rheenen W, et al. Genetic variability in sporadic amyotrophic lateral sclerosis. Brain. 2023;146(9):3760–9 This article provides a comprehensive catalog of pathogenic variations in a large cohort of sporadic ALS patients of European ancestry.PubMedPubMedCentralCrossRef • van Daele SH, Moisse M, Van Vugt JJFA, Zwamborn RAJ, Van Der Spek R, Van Rheenen W, et al. Genetic variability in sporadic amyotrophic lateral sclerosis. Brain. 2023;146(9):3760–9 This article provides a comprehensive catalog of pathogenic variations in a large cohort of sporadic ALS patients of European ancestry.PubMedPubMedCentralCrossRef
11.
go back to reference Conforti FL, Spataro R, Sproviero W, Mazzei R, Cavalcanti F, Condino F, et al. Ataxin-1 and ataxin-2 intermediate-length polyQ expansions in amyotrophic lateral sclerosis. Neurology. 2012;79(24):2315–20.PubMedCrossRef Conforti FL, Spataro R, Sproviero W, Mazzei R, Cavalcanti F, Condino F, et al. Ataxin-1 and ataxin-2 intermediate-length polyQ expansions in amyotrophic lateral sclerosis. Neurology. 2012;79(24):2315–20.PubMedCrossRef
12.
go back to reference • Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. The Lancet. 2022;400(10360):1363–80 This article provides a thorough overview of the evolving landscape of ALS and its current challenges, highlighting the disease’s phenotypic diversity, genetic factors, and recent developments in diagnostic criteria and therapeutic approaches.CrossRef • Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. The Lancet. 2022;400(10360):1363–80 This article provides a thorough overview of the evolving landscape of ALS and its current challenges, highlighting the disease’s phenotypic diversity, genetic factors, and recent developments in diagnostic criteria and therapeutic approaches.CrossRef
13.
go back to reference • Hayes LR, Kalab P. Emerging therapies and novel targets for TDP-43 proteinopathy in ALS/FTD. Neurotherapeutics. 2022;19(4):1061–84 This review focuses on TDP-43-directed therapies being tested in current or upcoming clinical trials in ALS and highlights alternative pathways modulating TDP-43 toxicity for future therapeutic development.PubMedPubMedCentralCrossRef • Hayes LR, Kalab P. Emerging therapies and novel targets for TDP-43 proteinopathy in ALS/FTD. Neurotherapeutics. 2022;19(4):1061–84 This review focuses on TDP-43-directed therapies being tested in current or upcoming clinical trials in ALS and highlights alternative pathways modulating TDP-43 toxicity for future therapeutic development.PubMedPubMedCentralCrossRef
14.
go back to reference • Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, Jafar-Nejad P, Shneider NA. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022;28(1):104–16 This study provides evidence for FUS silencing as a therapeutic strategy for ALS. ION363, a non-allele-specific FUS ASO, silences FUS, resulting in reduction of FUS levels and aggregates in both disease relevant mouse model and a patient with FUS.PubMedPubMedCentralCrossRef • Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, Jafar-Nejad P, Shneider NA. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022;28(1):104–16 This study provides evidence for FUS silencing as a therapeutic strategy for ALS. ION363, a non-allele-specific FUS ASO, silences FUS, resulting in reduction of FUS levels and aggregates in both disease relevant mouse model and a patient with FUS.PubMedPubMedCentralCrossRef
15.
go back to reference • Abati E, Bresolin N, Comi G, Corti S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin Ther Targets. 2020;24(4):295–310 This review explores gene silencing strategies in treatment of SOD1-ALS including RNAi, ASO, and CRISPR/Cas9 related strategies.PubMedCrossRef • Abati E, Bresolin N, Comi G, Corti S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin Ther Targets. 2020;24(4):295–310 This review explores gene silencing strategies in treatment of SOD1-ALS including RNAi, ASO, and CRISPR/Cas9 related strategies.PubMedCrossRef
17.
go back to reference Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–71.ADSPubMedPubMedCentralCrossRef Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367–71.ADSPubMedPubMedCentralCrossRef
18.
go back to reference • Baughn MW, Melamed Z, López-Erauskin J, Beccari MS, Ling K, Zuberi A, et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 2023;379(6637):1140–9 This study demonstrated that targeting the STMN2 cryptic exon using ASOs or dCas0Rx restored axon regeneration and lysosomal trafficking deficts in TDP-43 deficient human motor neurons.ADSPubMedPubMedCentralCrossRef • Baughn MW, Melamed Z, López-Erauskin J, Beccari MS, Ling K, Zuberi A, et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 2023;379(6637):1140–9 This study demonstrated that targeting the STMN2 cryptic exon using ASOs or dCas0Rx restored axon regeneration and lysosomal trafficking deficts in TDP-43 deficient human motor neurons.ADSPubMedPubMedCentralCrossRef
19.
go back to reference • Giovannelli I, Higginbottom A, Kirby J, Azzouz M, Shaw PJ. Prospects for gene replacement therapies in amyotrophic lateral sclerosis. Nat Rev Neurol. 2023;19(1):39–52 This review focuses on gene replacement therapies and identifies loss of function mutations in ALS as potential targets for future therapeutic development.PubMedCrossRef • Giovannelli I, Higginbottom A, Kirby J, Azzouz M, Shaw PJ. Prospects for gene replacement therapies in amyotrophic lateral sclerosis. Nat Rev Neurol. 2023;19(1):39–52 This review focuses on gene replacement therapies and identifies loss of function mutations in ALS as potential targets for future therapeutic development.PubMedCrossRef
21.
go back to reference Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–42.PubMedPubMedCentralCrossRef Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–42.PubMedPubMedCentralCrossRef
22.
go back to reference • Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC, et al. Phase 1–2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2020;383(2):109–19 This article details the Phase I/II clinical trial demonstrating safety of tofersen in SOD1-ALS as well as key reductions in target engagement and neurodegenerative biomarkers.PubMedCrossRef • Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC, et al. Phase 1–2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2020;383(2):109–19 This article details the Phase I/II clinical trial demonstrating safety of tofersen in SOD1-ALS as well as key reductions in target engagement and neurodegenerative biomarkers.PubMedCrossRef
23.
go back to reference McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128(8):3558–67.PubMedPubMedCentralCrossRef McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A, Farley BJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128(8):3558–67.PubMedPubMedCentralCrossRef
24.
go back to reference • Ly CV, Ireland MD, Self WK, Bollinger J, Jockel-Balsarotti J, Herzog H, et al. Protein kinetics of superoxide dismutase-1 in familial and sporadic amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2023;10(6):1012–24 This study demonstrated the feasibility of using stable isotope labelling to measure SOD1 protein kinetics in vivo and demonstrated that SOD1 A5V mutant protein is less abundant and turns over faster in mutation carriers.PubMedPubMedCentralCrossRef • Ly CV, Ireland MD, Self WK, Bollinger J, Jockel-Balsarotti J, Herzog H, et al. Protein kinetics of superoxide dismutase-1 in familial and sporadic amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2023;10(6):1012–24 This study demonstrated the feasibility of using stable isotope labelling to measure SOD1 protein kinetics in vivo and demonstrated that SOD1 A5V mutant protein is less abundant and turns over faster in mutation carriers.PubMedPubMedCentralCrossRef
25.
go back to reference Self WK, Schoch KM, Alex J, Barthélemy N, Bollinger JG, Sato C, et al. Protein production is an early biomarker for RNA -targeted therapies. Ann Clin Transl Neurol. 2018;5(12):1492–504.PubMedPubMedCentralCrossRef Self WK, Schoch KM, Alex J, Barthélemy N, Bollinger JG, Sato C, et al. Protein production is an early biomarker for RNA -targeted therapies. Ann Clin Transl Neurol. 2018;5(12):1492–504.PubMedPubMedCentralCrossRef
26.
go back to reference • Benatar M, Wuu J, Andersen PM, Bucelli RC, Andrews JA, Otto M, et al. Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics. 2022;19(4):1248–58 This article discusses the design considerations for the Phase III ATLAS trial of tofersen in presymptomatic SOD1-ALS.PubMedPubMedCentralCrossRef • Benatar M, Wuu J, Andersen PM, Bucelli RC, Andrews JA, Otto M, et al. Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers: the ATLAS study. Neurotherapeutics. 2022;19(4):1248–58 This article discusses the design considerations for the Phase III ATLAS trial of tofersen in presymptomatic SOD1-ALS.PubMedPubMedCentralCrossRef
27.
go back to reference Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci. 2010;13(11):1396–403.PubMedPubMedCentralCrossRef Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci. 2010;13(11):1396–403.PubMedPubMedCentralCrossRef
28.
go back to reference Forsberg K, Andersen PM, Marklund SL, Brännström T. Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol (Berl). 2011;121(5):623–34.PubMedCrossRef Forsberg K, Andersen PM, Marklund SL, Brännström T. Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol (Berl). 2011;121(5):623–34.PubMedCrossRef
29.
go back to reference Brotherton TE, Li Y, Cooper D, Gearing M, Julien JP, Rothstein JD, et al. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad Sci. 2012;109(14):5505–10.ADSPubMedPubMedCentralCrossRef Brotherton TE, Li Y, Cooper D, Gearing M, Julien JP, Rothstein JD, et al. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad Sci. 2012;109(14):5505–10.ADSPubMedPubMedCentralCrossRef
30.
go back to reference Liu H, Sanelli T, Horne P, Pioro EP, Strong MJ, Rogaeva E, et al. Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann Neurol. 2009;66(1):75–80.PubMedCrossRef Liu H, Sanelli T, Horne P, Pioro EP, Strong MJ, Rogaeva E, et al. Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann Neurol. 2009;66(1):75–80.PubMedCrossRef
31.
go back to reference Da Cruz S, Bui A, Saberi S, Lee SK, Stauffer J, McAlonis-Downes M, et al. Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol (Berl). 2017;134(1):97–111.PubMedCrossRef Da Cruz S, Bui A, Saberi S, Lee SK, Stauffer J, McAlonis-Downes M, et al. Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol (Berl). 2017;134(1):97–111.PubMedCrossRef
32.
go back to reference • Trist BG, Genoud S, Roudeau S, Rookyard A, Abdeen A, Cottam V, et al. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain. 2022;145(9):3108–30 This study use biochemical, histologic, and proteomic methods to show that structurally disordered, immature SOD1 protein abnormally accumulates in spinal cord motor neurons in SOD1-ALS and non-SOD1-linked ALS.PubMedPubMedCentralCrossRef • Trist BG, Genoud S, Roudeau S, Rookyard A, Abdeen A, Cottam V, et al. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain. 2022;145(9):3108–30 This study use biochemical, histologic, and proteomic methods to show that structurally disordered, immature SOD1 protein abnormally accumulates in spinal cord motor neurons in SOD1-ALS and non-SOD1-linked ALS.PubMedPubMedCentralCrossRef
33.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.PubMedPubMedCentralCrossRef DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.PubMedPubMedCentralCrossRef
34.
go back to reference Zhang K, Daigle JG, Cunningham KM, Coyne AN, Ruan K, Grima JC, et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell. 2018;173(4):958-971.e17.PubMedPubMedCentralCrossRef Zhang K, Daigle JG, Cunningham KM, Coyne AN, Ruan K, Grima JC, et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell. 2018;173(4):958-971.e17.PubMedPubMedCentralCrossRef
36.
go back to reference Bertrand A, Wen J, Rinaldi D, Houot M, Sayah S, Camuzat A, et al. Early cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers younger than 40 years. JAMA Neurol. 2018;75(2):236.PubMedCrossRef Bertrand A, Wen J, Rinaldi D, Houot M, Sayah S, Camuzat A, et al. Early cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers younger than 40 years. JAMA Neurol. 2018;75(2):236.PubMedCrossRef
37.
go back to reference Lee SE, Sias AC, Mandelli ML, Brown JA, Brown AB, Khazenzon AM, et al. Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. NeuroImage Clin. 2017;14:286–97.PubMedCrossRef Lee SE, Sias AC, Mandelli ML, Brown JA, Brown AB, Khazenzon AM, et al. Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. NeuroImage Clin. 2017;14:286–97.PubMedCrossRef
38.
go back to reference Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST, et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med. 2018;24(3):313–25.PubMedPubMedCentralCrossRef Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST, et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med. 2018;24(3):313–25.PubMedPubMedCentralCrossRef
39.
go back to reference • Zhu Q, Jiang J, Gendron TF, McAlonis-Downes M, Jiang L, Taylor A, et al. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci. 2020;23(5):615–24 This study showed that reduced expression of endogenous C9orf72 exacerbated autophagic, neuronal loss, and cognitive deficits in a mouse model expressing the C9 HRE suggesting that C9orf72 haploinsufficiency contributes to pathogenesis.PubMedPubMedCentralCrossRef • Zhu Q, Jiang J, Gendron TF, McAlonis-Downes M, Jiang L, Taylor A, et al. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci. 2020;23(5):615–24 This study showed that reduced expression of endogenous C9orf72 exacerbated autophagic, neuronal loss, and cognitive deficits in a mouse model expressing the C9 HRE suggesting that C9orf72 haploinsufficiency contributes to pathogenesis.PubMedPubMedCentralCrossRef
40.
go back to reference • Tran H, Moazami MP, Yang H, McKenna-Yasek D, Douthwright CL, Pinto C, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat Med. 2022;28(1):117–24 This study provided pre-clinical evidence that afinersen, a mixed backbone ASO to the C9orf72 repeat expansion, reduced RNA foci and poly(GP) in C9orf72 model mice and a single participant with C9-ALS.PubMedCrossRef • Tran H, Moazami MP, Yang H, McKenna-Yasek D, Douthwright CL, Pinto C, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat Med. 2022;28(1):117–24 This study provided pre-clinical evidence that afinersen, a mixed backbone ASO to the C9orf72 repeat expansion, reduced RNA foci and poly(GP) in C9orf72 model mice and a single participant with C9-ALS.PubMedCrossRef
41.
go back to reference • Sattler R, Traynor BJ, Robertson J, Van Den Bosch L, Barmada SJ, Svendsen CN, et al. Roadmap for C9ORF72 in frontotemporal dementia and amyotrophic lateral sclerosis: report on the C9ORF72 FTD/ALS summit. Neurol Ther. 2023;12(6):1821–43 This article summarizes recommendations from the 2023 C9orf72 FTD/ALS Summit to harmonize biomarkers and clinical trial design for C9orf72-related ALS-FTD.PubMedPubMedCentralCrossRef • Sattler R, Traynor BJ, Robertson J, Van Den Bosch L, Barmada SJ, Svendsen CN, et al. Roadmap for C9ORF72 in frontotemporal dementia and amyotrophic lateral sclerosis: report on the C9ORF72 FTD/ALS summit. Neurol Ther. 2023;12(6):1821–43 This article summarizes recommendations from the 2023 C9orf72 FTD/ALS Summit to harmonize biomarkers and clinical trial design for C9orf72-related ALS-FTD.PubMedPubMedCentralCrossRef
42.
go back to reference • Hung ST, Linares GR, Chang WH, Eoh Y, Krishnan G, Mendonca S, et al. PIKFYVE inhibition mitigates disease in models of diverse forms of ALS. Cell. 2023;186(4):786–802.e28 This study showed the pharmacologic and ASO-mediated PIKfyve inhibition in human-derived motor neurons representing diverse forms of ALS and animal models led to expulsion of aggregate-prone protein through a novel exosome-based protein clearance mechanism.PubMedPubMedCentralCrossRef • Hung ST, Linares GR, Chang WH, Eoh Y, Krishnan G, Mendonca S, et al. PIKFYVE inhibition mitigates disease in models of diverse forms of ALS. Cell. 2023;186(4):786–802.e28 This study showed the pharmacologic and ASO-mediated PIKfyve inhibition in human-derived motor neurons representing diverse forms of ALS and animal models led to expulsion of aggregate-prone protein through a novel exosome-based protein clearance mechanism.PubMedPubMedCentralCrossRef
43.
go back to reference Scotter EL, Chen HJ, Shaw CE. TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics. 2015;12(2):352–63.PubMedPubMedCentralCrossRef Scotter EL, Chen HJ, Shaw CE. TDP-43 proteinopathy and ALS: insights into disease mechanisms and therapeutic targets. Neurotherapeutics. 2015;12(2):352–63.PubMedPubMedCentralCrossRef
45.
go back to reference Sharma A, Cao EY, Kumar V, Zhang X, Leong HS, Wong AML, et al. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nat Commun. 2018;9(1):4931.ADSPubMedPubMedCentralCrossRef Sharma A, Cao EY, Kumar V, Zhang X, Leong HS, Wong AML, et al. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nat Commun. 2018;9(1):4931.ADSPubMedPubMedCentralCrossRef
46.
go back to reference • Tanemoto M, Hisahara S, Ikeda K, Yokokawa K, Manabe T, Tsuda R, et al. Sporadic amyotrophic lateral sclerosis due to a FUS P525L mutation with asymmetric muscle weakness and anti-ganglioside antibodies. Intern Med. 2021;60(12):1949–53 This case report details the early onset and rapid progression characteristic of FUS-ALS due to P525L mutations.PubMedPubMedCentralCrossRef • Tanemoto M, Hisahara S, Ikeda K, Yokokawa K, Manabe T, Tsuda R, et al. Sporadic amyotrophic lateral sclerosis due to a FUS P525L mutation with asymmetric muscle weakness and anti-ganglioside antibodies. Intern Med. 2021;60(12):1949–53 This case report details the early onset and rapid progression characteristic of FUS-ALS due to P525L mutations.PubMedPubMedCentralCrossRef
47.
go back to reference Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–75.ADSPubMedPubMedCentralCrossRef Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–75.ADSPubMedPubMedCentralCrossRef
48.
go back to reference Neuenschwander AG, Thai KK, Figueroa KP, Pulst SM. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol. 2014;71(12):1529.PubMedPubMedCentralCrossRef Neuenschwander AG, Thai KK, Figueroa KP, Pulst SM. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol. 2014;71(12):1529.PubMedPubMedCentralCrossRef
49.
go back to reference Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22(2):167–79. Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019;22(2):167–79.
50.
go back to reference Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68.PubMedPubMedCentralCrossRef Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22(2):180–90.PubMedPubMedCentralCrossRef Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22(2):180–90.PubMedPubMedCentralCrossRef
53.
go back to reference • López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, et al. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci. 2023. https://doi.org/10.1038/s41593-023-01496-0. This study showed that STMN2 depletion in aging mice causes pronounced collapse of axonal caliber, reduced interneurofilament spacing, and muscle denervation providing insight into the consequences of TDP-43 nuclear depletion and STMN2 cryptic exon inclusion.CrossRefPubMed • López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, et al. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci. 2023. https://​doi.​org/​10.​1038/​s41593-023-01496-0. This study showed that STMN2 depletion in aging mice causes pronounced collapse of axonal caliber, reduced interneurofilament spacing, and muscle denervation providing insight into the consequences of TDP-43 nuclear depletion and STMN2 cryptic exon inclusion.CrossRefPubMed
54.
go back to reference Willemse SW, Harley P, Van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, et al. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry. 2023;94(8):649–56.PubMedCrossRef Willemse SW, Harley P, Van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, et al. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry. 2023;94(8):649–56.PubMedCrossRef
Metadata
Title
Translating the ALS Genetic Revolution into Therapies: A Review
Authors
Christine Meadows, MD
Naraharisetty Anita Rau, MD
Warda Faridi, MD
Cindy V. Ly, MD, PhD
Publication date
30-01-2024
Publisher
Springer US
Published in
Current Treatment Options in Neurology / Issue 3/2024
Print ISSN: 1092-8480
Electronic ISSN: 1534-3138
DOI
https://doi.org/10.1007/s11940-024-00781-y