Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2022

Open Access 01-12-2022 | Amyotrophic Lateral Sclerosis | Research

Assessing the role of blood pressure in amyotrophic lateral sclerosis: a Mendelian randomization study

Authors: Kailin Xia, Linjing Zhang, Lu Tang, Tao Huang, Dongsheng Fan

Published in: Orphanet Journal of Rare Diseases | Issue 1/2022

Login to get access

Abstract

Background

Observational studies have suggested a close but controversial relationship between blood pressure (BP) and amyotrophic lateral sclerosis (ALS). It remains unclear whether this association is causal. The authors employed a bidirectional two-sample Mendelian randomization (MR) approach to evaluate the causal relationship between BP and ALS. Genetic proxies for systolic blood pressure (SBP), diastolic blood pressure (DBP), antihypertensive drugs (AHDs), ALS, and their corresponding genome-wide association study (GWAS) summary datasets were obtained from the most recent studies with the largest sample sizes. The inverse variance weighted (IVW) method was adopted as the main approach to examine the effect of BP on ALS and four other MR methods were used for sensitivity analyses. To exclude the interference between SBP and DBP, a multivariable MR approach was used.

Results

We found that genetically determined increased DBP was a protective factor for ALS (OR = 0.978, 95% CI 0.960–0.996, P = 0.017) and that increased SBP was an independent risk factor for ALS (OR = 1.014, 95% CI 1.003–1.025, P = 0.015), which is supported by sensitivity analyses. The use of calcium channel blocker (CCB) showed a causal relationship with ALS (OR = 0.985, 95% CI 0.971–1.000, P = 0.049). No evidence was revealed that ALS caused changes in BP.

Conclusions

This study provides genetic support for a causal effect of BP and ALS that increased DBP has a protective effect on ALS, and increased SBP is a risk factor for ALS, which may be related to sympathetic excitability. Blood pressure management is essential in ALS, and CCB may be a promising candidate.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pandya VA, Patani R. Decoding the relationship between ageing and amyotrophic lateral sclerosis: a cellular perspective. Brain. 2019;143(4):1057–72.PubMedCentralCrossRef Pandya VA, Patani R. Decoding the relationship between ageing and amyotrophic lateral sclerosis: a cellular perspective. Brain. 2019;143(4):1057–72.PubMedCentralCrossRef
3.
go back to reference Chiò A, Moglia C, Canosa A, Manera U, Vasta R, Brunetti M, et al. Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology. 2019;93(10):e984–94.PubMedPubMedCentralCrossRef Chiò A, Moglia C, Canosa A, Manera U, Vasta R, Brunetti M, et al. Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology. 2019;93(10):e984–94.PubMedPubMedCentralCrossRef
4.
go back to reference Chiò A, Mora G, Lauria G. Pain in amyotrophic lateral sclerosis. Lancet Neurol. 2017;16(2):144–57.PubMedCrossRef Chiò A, Mora G, Lauria G. Pain in amyotrophic lateral sclerosis. Lancet Neurol. 2017;16(2):144–57.PubMedCrossRef
5.
go back to reference GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94.CrossRef GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94.CrossRef
6.
go back to reference Wang B, Liao C, Zhou B, Cao W, Lv J, Yu C, et al. Genetic contribution to the variance of blood pressure and heart rate: a systematic review and meta-regression of twin studies. Twin Res Hum Genet. 2015;18(2):158–70.PubMedCrossRef Wang B, Liao C, Zhou B, Cao W, Lv J, Yu C, et al. Genetic contribution to the variance of blood pressure and heart rate: a systematic review and meta-regression of twin studies. Twin Res Hum Genet. 2015;18(2):158–70.PubMedCrossRef
7.
go back to reference Moglia C, Calvo A, Canosa A, Bertuzzo D, Cugnasco P, Solero L, et al. Influence of arterial hypertension, type 2 diabetes and cardiovascular risk factors on ALS outcome: a population-based study. Amyotroph Lateral Scler Front Degener. 2017;18(7–8):590–7.CrossRef Moglia C, Calvo A, Canosa A, Bertuzzo D, Cugnasco P, Solero L, et al. Influence of arterial hypertension, type 2 diabetes and cardiovascular risk factors on ALS outcome: a population-based study. Amyotroph Lateral Scler Front Degener. 2017;18(7–8):590–7.CrossRef
8.
go back to reference Körner S, Kollewe K, Ilsemann J, Müller-Heine A, Dengler R, Krampfl K, et al. Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. Eur J Neurol. 2013;20(4):647–54.PubMedCrossRef Körner S, Kollewe K, Ilsemann J, Müller-Heine A, Dengler R, Krampfl K, et al. Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. Eur J Neurol. 2013;20(4):647–54.PubMedCrossRef
9.
go back to reference Moreau C, Brunaud-Danel V, Dallongeville J, Duhamel A, Laurier-Grymonprez L, de Reuck J, et al. Modifying effect of arterial hypertension on amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13(2):194–201.PubMedCrossRef Moreau C, Brunaud-Danel V, Dallongeville J, Duhamel A, Laurier-Grymonprez L, de Reuck J, et al. Modifying effect of arterial hypertension on amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13(2):194–201.PubMedCrossRef
10.
11.
go back to reference Lian L, Liu M, Cui L, Guan Y, Liu T, Cui B, et al. Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in China. J Clin Neurosci. 2019;66:12–8.PubMedCrossRef Lian L, Liu M, Cui L, Guan Y, Liu T, Cui B, et al. Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in China. J Clin Neurosci. 2019;66:12–8.PubMedCrossRef
12.
go back to reference Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefPubMed Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.CrossRefPubMed
13.
go back to reference Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey SG. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr. 2016;103(4):965–78.PubMedPubMedCentralCrossRef Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey SG. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr. 2016;103(4):965–78.PubMedPubMedCentralCrossRef
14.
go back to reference Disney-Hogg L, Cornish AJ, Sud A, Law PJ, Kinnersley B, Jacobs DI, et al. Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Med. 2018;16(1):42.PubMedPubMedCentralCrossRef Disney-Hogg L, Cornish AJ, Sud A, Law PJ, Kinnersley B, Jacobs DI, et al. Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Med. 2018;16(1):42.PubMedPubMedCentralCrossRef
15.
go back to reference Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–25.PubMedPubMedCentralCrossRef Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–25.PubMedPubMedCentralCrossRef
16.
go back to reference Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron. 2018;97(6):1268-83.e6.PubMedPubMedCentralCrossRef Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron. 2018;97(6):1268-83.e6.PubMedPubMedCentralCrossRef
17.
go back to reference Ou YN, Yang YX, Shen XN, Ma YH, Chen SD, Dong Q, et al. Genetically determined blood pressure, antihypertensive medications, and risk of Alzheimer’s disease: a Mendelian randomization study. Alzheimers Res Ther. 2021;13(1):41.PubMedPubMedCentralCrossRef Ou YN, Yang YX, Shen XN, Ma YH, Chen SD, Dong Q, et al. Genetically determined blood pressure, antihypertensive medications, and risk of Alzheimer’s disease: a Mendelian randomization study. Alzheimers Res Ther. 2021;13(1):41.PubMedPubMedCentralCrossRef
18.
go back to reference Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317(6):626–34.PubMedPubMedCentralCrossRef Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317(6):626–34.PubMedPubMedCentralCrossRef
19.
go back to reference Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42.PubMedCrossRef Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42.PubMedCrossRef
20.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef
23.
go back to reference Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.PubMedPubMedCentralCrossRef Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.PubMedPubMedCentralCrossRef
24.
go back to reference Kandinov B, Drory VE, Tordjman K, Korczyn AD. Blood pressure measurements in a transgenic SOD1-G93A mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13(6):509–13.PubMedCrossRef Kandinov B, Drory VE, Tordjman K, Korczyn AD. Blood pressure measurements in a transgenic SOD1-G93A mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13(6):509–13.PubMedCrossRef
25.
go back to reference Bandres-Ciga S, Noyce AJ, Hemani G, Nicolas A, Calvo A, Mora G, et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann Neurol. 2019;85(4):470–81.PubMedPubMedCentralCrossRef Bandres-Ciga S, Noyce AJ, Hemani G, Nicolas A, Calvo A, Mora G, et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann Neurol. 2019;85(4):470–81.PubMedPubMedCentralCrossRef
26.
go back to reference Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–115.PubMed Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–115.PubMed
27.
go back to reference Flint AC, Conell C, Ren X, Banki NM, Chan SL, Rao VA, et al. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med. 2019;381(3):243–51.PubMedCrossRef Flint AC, Conell C, Ren X, Banki NM, Chan SL, Rao VA, et al. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med. 2019;381(3):243–51.PubMedCrossRef
28.
go back to reference Lin F-C, Tsai C-P, Kuang-Wu Lee J, Wu M-T, Tzu-Chi LC. Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: a total population-based case-control study. JAMA Neurol. 2015;72(1):40–8.PubMedCrossRef Lin F-C, Tsai C-P, Kuang-Wu Lee J, Wu M-T, Tzu-Chi LC. Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: a total population-based case-control study. JAMA Neurol. 2015;72(1):40–8.PubMedCrossRef
30.
go back to reference Benatar M, Turner MR, Wuu J. Defining pre-symptomatic amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener. 2019;20(5–6):303–9.CrossRef Benatar M, Turner MR, Wuu J. Defining pre-symptomatic amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener. 2019;20(5–6):303–9.CrossRef
31.
go back to reference Glodzik L, Rusinek H, Tsui W, Pirraglia E, Kim HJ, Deshpande A, et al. Different relationship between systolic blood pressure and cerebral perfusion in subjects with and without hypertension. Hypertension. 2019;73(1):197–205.PubMedCrossRef Glodzik L, Rusinek H, Tsui W, Pirraglia E, Kim HJ, Deshpande A, et al. Different relationship between systolic blood pressure and cerebral perfusion in subjects with and without hypertension. Hypertension. 2019;73(1):197–205.PubMedCrossRef
32.
go back to reference Qiu C, von Strauss E, Fastbom J, Winblad B, Fratiglioni L. Low blood pressure and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Arch Neurol. 2003;60(2):223–8.PubMedCrossRef Qiu C, von Strauss E, Fastbom J, Winblad B, Fratiglioni L. Low blood pressure and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Arch Neurol. 2003;60(2):223–8.PubMedCrossRef
33.
go back to reference Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res. 2017;95(4):943–72.PubMedCrossRef Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J Neurosci Res. 2017;95(4):943–72.PubMedCrossRef
34.
go back to reference Muhire G, Iulita MF, Vallerand D, Youwakim J, Gratuze M, Petry FR, et al. Arterial stiffness due to carotid calcification disrupts cerebral blood flow regulation and leads to cognitive deficits. J Am Heart Assoc. 2019;8(9):e011630.PubMedPubMedCentralCrossRef Muhire G, Iulita MF, Vallerand D, Youwakim J, Gratuze M, Petry FR, et al. Arterial stiffness due to carotid calcification disrupts cerebral blood flow regulation and leads to cognitive deficits. J Am Heart Assoc. 2019;8(9):e011630.PubMedPubMedCentralCrossRef
35.
go back to reference Velebit J, Horvat A, Smolič T, Prpar Mihevc S, Rogelj B, Zorec R, et al. Astrocytes with TDP-43 inclusions exhibit reduced noradrenergic cAMP and Ca(2+) signaling and dysregulated cell metabolism. Sci Rep. 2020;10(1):6003.PubMedPubMedCentralCrossRef Velebit J, Horvat A, Smolič T, Prpar Mihevc S, Rogelj B, Zorec R, et al. Astrocytes with TDP-43 inclusions exhibit reduced noradrenergic cAMP and Ca(2+) signaling and dysregulated cell metabolism. Sci Rep. 2020;10(1):6003.PubMedPubMedCentralCrossRef
36.
go back to reference Dalla Vecchia L, De Maria B, Marinou K, Sideri R, Lucini A, Porta A, et al. Cardiovascular neural regulation is impaired in amyotrophic lateral sclerosis patients. A study by spectral and complexity analysis of cardiovascular oscillations. Physiol Meas. 2015;36(4):659–70.PubMedCrossRef Dalla Vecchia L, De Maria B, Marinou K, Sideri R, Lucini A, Porta A, et al. Cardiovascular neural regulation is impaired in amyotrophic lateral sclerosis patients. A study by spectral and complexity analysis of cardiovascular oscillations. Physiol Meas. 2015;36(4):659–70.PubMedCrossRef
37.
go back to reference Pimentel RMM, Macedo H Jr, Valenti VE, Rocha FO, Abreu LC, Monteiro CBM, et al. Decreased heart rate variability in individuals with amyotrophic lateral sclerosis. Respir Care. 2019;64(9):1088–95.PubMedCrossRef Pimentel RMM, Macedo H Jr, Valenti VE, Rocha FO, Abreu LC, Monteiro CBM, et al. Decreased heart rate variability in individuals with amyotrophic lateral sclerosis. Respir Care. 2019;64(9):1088–95.PubMedCrossRef
38.
go back to reference Keskin I, Forsgren E, Lehmann M, Andersen PM, Brännström T, Lange DJ, et al. The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta Neuropathol. 2019;138(1):85–101.PubMedPubMedCentralCrossRef Keskin I, Forsgren E, Lehmann M, Andersen PM, Brännström T, Lange DJ, et al. The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta Neuropathol. 2019;138(1):85–101.PubMedPubMedCentralCrossRef
39.
go back to reference Bursch F, Kalmbach N, Naujock M, Staege S, Eggenschwiler R, Abo-Rady M, et al. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Hum Mol Genet. 2019;28(17):2835–50.PubMedCrossRef Bursch F, Kalmbach N, Naujock M, Staege S, Eggenschwiler R, Abo-Rady M, et al. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Hum Mol Genet. 2019;28(17):2835–50.PubMedCrossRef
40.
go back to reference Tedeschi V, Petrozziello T, Sisalli MJ, Boscia F, Canzoniero LMT, Secondo A. The activation of Mucolipin TRP channel 1 (TRPML1) protects motor neurons from L-BMAA neurotoxicity by promoting autophagic clearance. Sci Rep. 2019;9(1):10743.PubMedPubMedCentralCrossRef Tedeschi V, Petrozziello T, Sisalli MJ, Boscia F, Canzoniero LMT, Secondo A. The activation of Mucolipin TRP channel 1 (TRPML1) protects motor neurons from L-BMAA neurotoxicity by promoting autophagic clearance. Sci Rep. 2019;9(1):10743.PubMedPubMedCentralCrossRef
41.
go back to reference Tedeschi V, Petrozziello T, Secondo A. Calcium dyshomeostasis and lysosomal Ca2+ dysfunction in amyotrophic lateral sclerosis. Cells. 2019;8(10):1216.PubMedCentralCrossRef Tedeschi V, Petrozziello T, Secondo A. Calcium dyshomeostasis and lysosomal Ca2+ dysfunction in amyotrophic lateral sclerosis. Cells. 2019;8(10):1216.PubMedCentralCrossRef
42.
go back to reference Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentralCrossRef Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentralCrossRef
Metadata
Title
Assessing the role of blood pressure in amyotrophic lateral sclerosis: a Mendelian randomization study
Authors
Kailin Xia
Linjing Zhang
Lu Tang
Tao Huang
Dongsheng Fan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2022
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-022-02212-0

Other articles of this Issue 1/2022

Orphanet Journal of Rare Diseases 1/2022 Go to the issue