Skip to main content
Top
Published in: Journal of Neurology 5/2020

01-05-2020 | Amyotrophic Lateral Sclerosis | Original Communication

ALS-derived fibroblasts exhibit reduced proliferation rate, cytoplasmic TDP-43 aggregation and a higher susceptibility to DNA damage

Authors: Javier Riancho, David Castanedo-Vázquez, Francisco Gil-Bea, Olga Tapia, Jana Arozamena, Carlos Durán-Vían, María José Sedano, Maria Teresa Berciano, Adolfo Lopez de Munain, Miguel Lafarga

Published in: Journal of Neurology | Issue 5/2020

Login to get access

Abstract

Background

Dermic fibroblasts have been proposed as a potential genetic-ALS cellular model. This study aimed to explore whether dermic fibroblasts from patients with sporadic-ALS (sALS) recapitulate alterations typical of ALS motor neurons and exhibit abnormal DNA-damage response.

Methods

Dermic fibroblasts were obtained from eight sALS patients and four control subjects. Cellular characterization included proliferation rate analysis, cytoarchitecture studies and confocal immunofluorescence assessment for TDP-43. Additionally, basal and irradiation-induced DNA damage was evaluated by confocal immunofluorescence and biochemical techniques.

Results

sALS-fibroblasts showed decreased proliferation rates compared to controls. Additionally, whereas control fibroblasts exhibited the expected normal spindle-shaped morphology, ALS fibroblasts were thinner, with reduced cell size and enlarged nucleoli, with frequent cytoplasmic TDP-43aggregates. Also, baseline signs of DNA damage were evidenced more frequently in ALS-derived fibroblasts (11 versus 4% in control-fibroblasts). Assays for evaluating the irradiation-induced DNA damage demonstrated that DNA repair was defective in ALS-fibroblasts, accumulating more than double of γH2AX-positive DNA damage foci than controls. Very intriguingly, the proportion of fibroblasts particularly vulnerable to irradiation (with more than 15 DNA damage foci per nucleus) was seven times higher in ALS-derived fibroblasts than in controls.

Conclusions

Dermic-derived ALS fibroblasts recapitulate relevant cellular features of sALS and show a higher susceptibility to DNA damage and defective DNA repair responses. Altogether, these results support that dermic fibroblasts may represent a convenient and accessible ALS cellular model to study pathogenetic mechanisms, particularly those related to DNA damage response, as well as the eventual response to disease-modifying therapies.
Literature
1.
go back to reference Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ et al (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81(4):385–390CrossRef Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ et al (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81(4):385–390CrossRef
2.
go back to reference Riancho J, Lozano-Cuesta P, Santurtun A, Sanchez-Juan P, Lopez-Vega JM, Berciano J et al (2016) Amyotrophic lateral sclerosis in Northern Spain 40 years later: what has changed? Neurodegener Dis 16(5–6):337–341CrossRef Riancho J, Lozano-Cuesta P, Santurtun A, Sanchez-Juan P, Lopez-Vega JM, Berciano J et al (2016) Amyotrophic lateral sclerosis in Northern Spain 40 years later: what has changed? Neurodegener Dis 16(5–6):337–341CrossRef
3.
go back to reference Brown RH, Al CA (2017) Amyotrophic Lateral Sclerosis. N Engl J Med 377(2):162–172CrossRef Brown RH, Al CA (2017) Amyotrophic Lateral Sclerosis. N Engl J Med 377(2):162–172CrossRef
4.
go back to reference Zufiria M, Gil-Bea FJ, Fernandez-Torron R, Poza JJ, Munoz-Blanco JL, Rojas-Garcia R et al (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129CrossRef Zufiria M, Gil-Bea FJ, Fernandez-Torron R, Poza JJ, Munoz-Blanco JL, Rojas-Garcia R et al (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129CrossRef
5.
go back to reference Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munain AL, Santurtun A (2018) The increasing importance of environmental conditions in amyotrophic lateral sclerosis. Int J Biometeorol 62:1361–1374CrossRef Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munain AL, Santurtun A (2018) The increasing importance of environmental conditions in amyotrophic lateral sclerosis. Int J Biometeorol 62:1361–1374CrossRef
6.
go back to reference Ittner LM, Halliday GM, Kril JJ, Gotz J, Hodges JR, Kiernan MC (2015) FTD and ALS–translating mouse studies into clinical trials. Nat Rev Neurol 11(6):360–366CrossRef Ittner LM, Halliday GM, Kril JJ, Gotz J, Hodges JR, Kiernan MC (2015) FTD and ALS–translating mouse studies into clinical trials. Nat Rev Neurol 11(6):360–366CrossRef
7.
go back to reference Lutz C (2018) Mouse models of ALS: Past, present and future. Brain Res 1693(Pt A):1–10CrossRef Lutz C (2018) Mouse models of ALS: Past, present and future. Brain Res 1693(Pt A):1–10CrossRef
8.
go back to reference Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupre N (2016) From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 4(1):70CrossRef Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupre N (2016) From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 4(1):70CrossRef
9.
go back to reference Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, Kunz WS et al (2012) Primary skin fibroblasts as a model of Parkinson's disease. Mol Neurobiol 46(1):20–27CrossRef Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, Kunz WS et al (2012) Primary skin fibroblasts as a model of Parkinson's disease. Mol Neurobiol 46(1):20–27CrossRef
10.
go back to reference Van Linthout S, Miteva K, Tschope C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102(2):258–269CrossRef Van Linthout S, Miteva K, Tschope C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102(2):258–269CrossRef
11.
go back to reference Sabatelli M, Zollino M, Conte A, Del Grande A, Marangi G, Lucchini M et al (2015) Primary fibroblasts cultures reveal TDP-43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations. Neurobiol Aging 36(5):2005CrossRef Sabatelli M, Zollino M, Conte A, Del Grande A, Marangi G, Lucchini M et al (2015) Primary fibroblasts cultures reveal TDP-43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations. Neurobiol Aging 36(5):2005CrossRef
12.
go back to reference Imamura K, Izumi Y, Watanabe A, Tsukita K, Woltjen K, Yamamoto T et al (2017) The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci Transl Med 9:3962CrossRef Imamura K, Izumi Y, Watanabe A, Tsukita K, Woltjen K, Yamamoto T et al (2017) The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci Transl Med 9:3962CrossRef
13.
go back to reference Mata-Garrido J, Tapia O, Casafont I, Berciano MT, Cuadrado A, Lafarga M (2018) Persistent accumulation of unrepaired DNA damage in rat cortical neurons: nuclear organization and ChIP-seq analysis of damaged DNA. Acta Neuropathol Commun 6(1):68CrossRef Mata-Garrido J, Tapia O, Casafont I, Berciano MT, Cuadrado A, Lafarga M (2018) Persistent accumulation of unrepaired DNA damage in rat cortical neurons: nuclear organization and ChIP-seq analysis of damaged DNA. Acta Neuropathol Commun 6(1):68CrossRef
14.
go back to reference Chow HM, Herrup K (2015) Genomic integrity and the ageing brain. Nat Rev Neurosci 16(11):672–684CrossRef Chow HM, Herrup K (2015) Genomic integrity and the ageing brain. Nat Rev Neurosci 16(11):672–684CrossRef
15.
go back to reference Madabhushi R, Pan L, Tsai LH (2014) DNA damage and its links to neurodegeneration. Neuron 83(2):266–282CrossRef Madabhushi R, Pan L, Tsai LH (2014) DNA damage and its links to neurodegeneration. Neuron 83(2):266–282CrossRef
16.
go back to reference Sanders LH, Laganiere J, Cooper O, Mak SK, Vu BJ, Huang YA et al (2014) LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiol Dis 62:381–386CrossRef Sanders LH, Laganiere J, Cooper O, Mak SK, Vu BJ, Huang YA et al (2014) LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiol Dis 62:381–386CrossRef
17.
go back to reference Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res 35(22):7497–7504CrossRef Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res 35(22):7497–7504CrossRef
18.
go back to reference Farg MA, Konopka A, Soo KY, Ito D, Atkin JD (2017) The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum Mol Genet 26(15):2882–2896CrossRef Farg MA, Konopka A, Soo KY, Ito D, Atkin JD (2017) The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum Mol Genet 26(15):2882–2896CrossRef
19.
go back to reference Wang H, Hegde ML (2019) New mechanisms of DNA repair defects in fused in sarcoma-associated neurodegeneration: stage set for DNA repair-based therapeutics? J Exp Neurosci 13:1179069519856358PubMedPubMedCentral Wang H, Hegde ML (2019) New mechanisms of DNA repair defects in fused in sarcoma-associated neurodegeneration: stage set for DNA repair-based therapeutics? J Exp Neurosci 13:1179069519856358PubMedPubMedCentral
20.
go back to reference Mitra J, Guerrero EN, Hegde PM, Liachko NF, Wang H, Vasquez V et al (2019) Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc Natl Acad Sci USA 116(10):4696–4705CrossRef Mitra J, Guerrero EN, Hegde PM, Liachko NF, Wang H, Vasquez V et al (2019) Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc Natl Acad Sci USA 116(10):4696–4705CrossRef
21.
go back to reference Naumann M, Pal A, Goswami A, Lojewski X, Japtok J, Vehlow A et al (2018) Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat Commun 9(1):335CrossRef Naumann M, Pal A, Goswami A, Lojewski X, Japtok J, Vehlow A et al (2018) Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat Commun 9(1):335CrossRef
22.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299CrossRef Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299CrossRef
23.
go back to reference Vangipuram M, Ting D, Kim S, Diaz R, Schule B (2013) Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp 77:e3779 Vangipuram M, Ting D, Kim S, Diaz R, Schule B (2013) Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp 77:e3779
24.
go back to reference Mata-Garrido J, Casafont I, Tapia O, Berciano MT, Lafarga M (2016) Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization. Acta Neuropathol Commun 4:41CrossRef Mata-Garrido J, Casafont I, Tapia O, Berciano MT, Lafarga M (2016) Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization. Acta Neuropathol Commun 4:41CrossRef
25.
go back to reference Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair 3(8–9):959–967CrossRef Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair 3(8–9):959–967CrossRef
26.
go back to reference Delgado-Calle J, Arozamena J, Garcia-Renedo R, Garcia-Ibarbia C, Pascual-Carra MA, Gonzalez-Macias J et al (2011) Osteocyte deficiency in hip fractures. Calcif Tissue Int 89(4):327–334CrossRef Delgado-Calle J, Arozamena J, Garcia-Renedo R, Garcia-Ibarbia C, Pascual-Carra MA, Gonzalez-Macias J et al (2011) Osteocyte deficiency in hip fractures. Calcif Tissue Int 89(4):327–334CrossRef
27.
go back to reference Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206CrossRef Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206CrossRef
28.
go back to reference Casafont I, Bengoechea R, Tapia O, Berciano MT, Lafarga M (2009) TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J Struct Biol 167(3):235–241CrossRef Casafont I, Bengoechea R, Tapia O, Berciano MT, Lafarga M (2009) TDP-43 localizes in mRNA transcription and processing sites in mammalian neurons. J Struct Biol 167(3):235–241CrossRef
29.
go back to reference Palanca A, Casafont I, Berciano MT, Lafarga M (2014) Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim Biophys Acta 1842(6):848–859CrossRef Palanca A, Casafont I, Berciano MT, Lafarga M (2014) Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim Biophys Acta 1842(6):848–859CrossRef
30.
go back to reference Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15(1):7–18CrossRef Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15(1):7–18CrossRef
31.
go back to reference Konrad C, Kawamata H, Bredvik KG, Arreguin AJ, Cajamarca SA, Hupf JC et al (2017) Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients. Mol Neurodegener 12(1):76CrossRef Konrad C, Kawamata H, Bredvik KG, Arreguin AJ, Cajamarca SA, Hupf JC et al (2017) Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients. Mol Neurodegener 12(1):76CrossRef
32.
go back to reference Liu WC, Liu T, Liu ZH, Deng M (2016) Detection the mutated protein aggregation and mitochondrial function in fibroblasts from amyotrophic lateral sclerosis patients with SOD1 gene mutations. Zhonghua Yi Xue Za Zhi 96(25):1982–1986PubMed Liu WC, Liu T, Liu ZH, Deng M (2016) Detection the mutated protein aggregation and mitochondrial function in fibroblasts from amyotrophic lateral sclerosis patients with SOD1 gene mutations. Zhonghua Yi Xue Za Zhi 96(25):1982–1986PubMed
33.
go back to reference Orru S, Coni P, Floris A, Littera R, Carcassi C, Sogos V et al (2016) Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP-43 nuclear function. Hum Mol Genet 25(20):4473–4483PubMed Orru S, Coni P, Floris A, Littera R, Carcassi C, Sogos V et al (2016) Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP-43 nuclear function. Hum Mol Genet 25(20):4473–4483PubMed
34.
go back to reference Lo BM, Di Fini F, Notaro A, Spataro R, Conforti FL, La BV (2017) ALS-related mutant FUS protein is mislocalized to cytoplasm and is recruited into stress granules of fibroblasts from asymptomatic FUS P525L mutation carriers. Neurodegener Dis 17(6):292–303CrossRef Lo BM, Di Fini F, Notaro A, Spataro R, Conforti FL, La BV (2017) ALS-related mutant FUS protein is mislocalized to cytoplasm and is recruited into stress granules of fibroblasts from asymptomatic FUS P525L mutation carriers. Neurodegener Dis 17(6):292–303CrossRef
35.
go back to reference Alberts, Johnson, Lewis, Raf, Roberts, Walter (2015) Biología molecular de la célula. 6ª Edición ed. Omega, Sabadell. ISBN: 9788428216388 Alberts, Johnson, Lewis, Raf, Roberts, Walter (2015) Biología molecular de la célula. 6ª Edición ed. Omega, Sabadell. ISBN: 9788428216388
36.
go back to reference Riancho J, Ruiz-Soto M, Villagra NT, Berciano J, Berciano MT, Lafarga M (2014) Compensatory motor neuron response to chromatolysis in the murine hSOD1(G93A) model of amyotrophic lateral sclerosis. Front Cell Neurosci 8:346CrossRef Riancho J, Ruiz-Soto M, Villagra NT, Berciano J, Berciano MT, Lafarga M (2014) Compensatory motor neuron response to chromatolysis in the murine hSOD1(G93A) model of amyotrophic lateral sclerosis. Front Cell Neurosci 8:346CrossRef
37.
go back to reference Lee SM, Asress S, Hales CM, Gearing M, Vizcarra JC, Fournier CN et al. (2019) TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun 1(1):fcz014. Lee SM, Asress S, Hales CM, Gearing M, Vizcarra JC, Fournier CN et al. (2019) TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun 1(1):fcz014.
38.
go back to reference Codron P, Cassereau J, Vourch P, Veyrat-Durebex C, Blasco H, Kane S et al (2018) Primary fibroblasts derived from sporadic amyotrophic lateral sclerosis patients do not show ALS cytological lesions. Amyotroph Lateral Scler Frontotemporal Degener 19:446–456CrossRef Codron P, Cassereau J, Vourch P, Veyrat-Durebex C, Blasco H, Kane S et al (2018) Primary fibroblasts derived from sporadic amyotrophic lateral sclerosis patients do not show ALS cytological lesions. Amyotroph Lateral Scler Frontotemporal Degener 19:446–456CrossRef
39.
go back to reference De Marco G, Lupino E, Calvo A, Moglia C, Buccinna B, Grifoni S et al (2011) Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol 121(5):611–622CrossRef De Marco G, Lupino E, Calvo A, Moglia C, Buccinna B, Grifoni S et al (2011) Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol 121(5):611–622CrossRef
40.
go back to reference De Marco G, Lomartire A, Calvo A, Risso A, De Luca E, Mostert M et al (2017) Monocytes of patients with amyotrophic lateral sclerosis linked to gene mutations display altered TDP-43 subcellular distribution. Neuropathol Appl Neurobiol 43(2):133–153CrossRef De Marco G, Lomartire A, Calvo A, Risso A, De Luca E, Mostert M et al (2017) Monocytes of patients with amyotrophic lateral sclerosis linked to gene mutations display altered TDP-43 subcellular distribution. Neuropathol Appl Neurobiol 43(2):133–153CrossRef
41.
go back to reference Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M (2011) Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 122(4):481–493CrossRef Casafont I, Palanca A, Lafarga V, Berciano MT, Lafarga M (2011) Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 122(4):481–493CrossRef
42.
go back to reference Riancho J, Gil-Bea FJ, Castanedo-Vazquez D, Sedano MJ, Zufiria M, de Eulate GFG et al (2018) Clinical evidences supporting the Src/c-Abl pathway as potential therapeutic target in amyotrophic lateral sclerosis. J Neurol Sci 393:80–82CrossRef Riancho J, Gil-Bea FJ, Castanedo-Vazquez D, Sedano MJ, Zufiria M, de Eulate GFG et al (2018) Clinical evidences supporting the Src/c-Abl pathway as potential therapeutic target in amyotrophic lateral sclerosis. J Neurol Sci 393:80–82CrossRef
Metadata
Title
ALS-derived fibroblasts exhibit reduced proliferation rate, cytoplasmic TDP-43 aggregation and a higher susceptibility to DNA damage
Authors
Javier Riancho
David Castanedo-Vázquez
Francisco Gil-Bea
Olga Tapia
Jana Arozamena
Carlos Durán-Vían
María José Sedano
Maria Teresa Berciano
Adolfo Lopez de Munain
Miguel Lafarga
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 5/2020
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-020-09704-8

Other articles of this Issue 5/2020

Journal of Neurology 5/2020 Go to the issue