Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Ampicillin | Research

Antibacterial efficacy of indigenous Pakistani honey against extensively drug-resistant clinical isolates of Salmonella enterica serovar Typhi: an alternative option to combat antimicrobial resistance

Authors: Hasan Ejaz, Mamoona Sultan, Muhammad Usman Qamar, Kashaf Junaid, Nasir Rasool, Awadh Alanazi, Mashael W. Alruways, Bi Bi Zainab Mazhari, Yasir Alruwaili, Syed Nasir Abbas Bukhari, Sonia Younas

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Extensively drug-resistant (XDR) Salmonella enterica serovar Typhi (S. Typhi) poses a grave threat to public health due to increased mortality and morbidity caused by typhoid fever. Honey is a promising antibacterial agent, and we aimed to determine the antibacterial activity of honey against XDR S. Typhi.

Methods

We isolated 20 clinical isolates of XDR S. Typhi from pediatric septicemic patients and determined the minimum inhibitory concentrations (MICs) of different antibiotics against the pathogens using the VITEK 2 Compact system. Antimicrobial-resistant genes carried by the isolates were identified using PCR. The antibacterial efficacy of five Pakistani honeys was examined using agar well diffusion assay, and their MICs and minimum bactericidal concentrations (MBCs) were determined with the broth microdilution method.

Results

All 20 isolates were confirmed as S. Typhi. The antibiogram phenotype was confirmed as XDR S. Typhi with resistance to ampicillin (≥ 32 µg/mL), ciprofloxacin (≥ 4 µg/mL), and ceftriaxone (≥ 4 µg/mL) and sensitivity to azithromycin (≤ 16 µg/mL) and carbapenems (≤ 1 µg/mL). Molecular conformation revealed the presence of blaTM-1, Sul1, qnrS, gyrA, gyrB, and blaCTX-M-15 genes in all isolates. Among the five honeys, beri honey had the highest zone of inhibition of 7–15 mm and neem honey had a zone of inhibition of 7–12 mm. The MIC and MBC of beri honey against 3/20 (15%) XDR S. Typhi isolates were 3.125 and 6.25%, respectively, while the MIC and MBC of neem were 3.125 and 6.25%, respectively, against 3/20 (15%) isolates and 6.25 and 12.5%, respectively, against 7/20 (35%) isolates.

Conclusion

Indigenous honeys have an effective role in combating XDR S. Typhi. They are potential candidates for clinical trials as alternative therapeutic options against XDR S. Typhi isolates.
Literature
1.
go back to reference Crump JA. Progress in typhoid fever epidemiology. Clin Infect Dis. 2019;68(1):S4–9.CrossRef Crump JA. Progress in typhoid fever epidemiology. Clin Infect Dis. 2019;68(1):S4–9.CrossRef
3.
go back to reference Bhutta ZA, Gaffey MF, Crump JA, Steele D, Breiman RF, Mintz ED, et al. Typhoid fever: way forward. Am J Trop Med Hyg. 2018;99(3):89–96.CrossRef Bhutta ZA, Gaffey MF, Crump JA, Steele D, Breiman RF, Mintz ED, et al. Typhoid fever: way forward. Am J Trop Med Hyg. 2018;99(3):89–96.CrossRef
4.
go back to reference Fatima M, Kumar S, Hussain M, Memon NM, Vighio A, Syed MA, et al. Morbidity and mortality associated with typhoid fever among hospitalized patients in Hyderabad District, Pakistan, 2017–2018: retrospective record review. JMIR Public Health Surveill. 2021;7(5): e27268.CrossRef Fatima M, Kumar S, Hussain M, Memon NM, Vighio A, Syed MA, et al. Morbidity and mortality associated with typhoid fever among hospitalized patients in Hyderabad District, Pakistan, 2017–2018: retrospective record review. JMIR Public Health Surveill. 2021;7(5): e27268.CrossRef
5.
go back to reference Saha SK, Talukder SY, Islam M, Saha S. A highly ceftriaxone-resistant Salmonella typhi in Bangladesh. Pediatr Infect Dis J. 1999;18(4):387.CrossRef Saha SK, Talukder SY, Islam M, Saha S. A highly ceftriaxone-resistant Salmonella typhi in Bangladesh. Pediatr Infect Dis J. 1999;18(4):387.CrossRef
6.
go back to reference Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK, et al. Emergence of an extensively drug-resistant salmonella enterica Serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation Cephalosporins. mBio. 2018;9(1):e00105.CrossRef Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK, et al. Emergence of an extensively drug-resistant salmonella enterica Serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation Cephalosporins. mBio. 2018;9(1):e00105.CrossRef
7.
go back to reference Zakir M, Khan M, Umar MI, Murtaza G, Ashraf M, Shamim S. Emerging Trends of Multidrug-Resistant (MDR) and Extensively Drug-Resistant (XDR) Salmonella Typhi in a Tertiary Care Hospital of Lahore, Pakistan. Microorganisms. 2021;9(12):2484.CrossRef Zakir M, Khan M, Umar MI, Murtaza G, Ashraf M, Shamim S. Emerging Trends of Multidrug-Resistant (MDR) and Extensively Drug-Resistant (XDR) Salmonella Typhi in a Tertiary Care Hospital of Lahore, Pakistan. Microorganisms. 2021;9(12):2484.CrossRef
8.
go back to reference Ahsan S, Rahman S. Azithromycin resistance in clinical isolates of Salmonella enterica Serovars Typhi and Paratyphi in Bangladesh. Microb Drug Resist. 2019;25(1):8–13.CrossRef Ahsan S, Rahman S. Azithromycin resistance in clinical isolates of Salmonella enterica Serovars Typhi and Paratyphi in Bangladesh. Microb Drug Resist. 2019;25(1):8–13.CrossRef
9.
go back to reference Duy PT, Dongol S, Giri A, Nguyen To NT, Dan Thanh HN, Nhu Quynh NP, et al. The emergence of azithromycin-resistant Salmonella Typhi in Nepal. JAC Antimicrob Resist. 2020;2(4):dlaa109.CrossRef Duy PT, Dongol S, Giri A, Nguyen To NT, Dan Thanh HN, Nhu Quynh NP, et al. The emergence of azithromycin-resistant Salmonella Typhi in Nepal. JAC Antimicrob Resist. 2020;2(4):dlaa109.CrossRef
10.
go back to reference Carey ME, Jain R, Yousuf M, Maes M, Dyson ZA, Thu TNH, et al. Spontaneous emergence of azithromycin resistance in independent lineages of Salmonella Typhi in Northern India. Clin Infect Dis. 2021;72(5):e120–7.CrossRef Carey ME, Jain R, Yousuf M, Maes M, Dyson ZA, Thu TNH, et al. Spontaneous emergence of azithromycin resistance in independent lineages of Salmonella Typhi in Northern India. Clin Infect Dis. 2021;72(5):e120–7.CrossRef
11.
go back to reference Kim C, Latif I, Neupane DP, Lee GY, Kwon RS, Batool A, et al. The molecular basis of extensively drug-resistant Salmonella Typhi isolates from pediatric septicemia patients. PLoS ONE. 2021;16(9): e0257744.CrossRef Kim C, Latif I, Neupane DP, Lee GY, Kwon RS, Batool A, et al. The molecular basis of extensively drug-resistant Salmonella Typhi isolates from pediatric septicemia patients. PLoS ONE. 2021;16(9): e0257744.CrossRef
12.
go back to reference Qamar MU, Ambreen A, Batool A, Rasool MH, Shafique M, Khan A, et al. Molecular detection of extensively drug-resistant Salmonella Typhi and carbapenem-resistant pathogens in pediatric septicemia patients in Pakistan - a public health concern. Future Microbiol. 2021;16:731–9.CrossRef Qamar MU, Ambreen A, Batool A, Rasool MH, Shafique M, Khan A, et al. Molecular detection of extensively drug-resistant Salmonella Typhi and carbapenem-resistant pathogens in pediatric septicemia patients in Pakistan - a public health concern. Future Microbiol. 2021;16:731–9.CrossRef
13.
go back to reference Chatham-Stephens K, Medalla F, Hughes M, Appiah GD, Aubert RD, Caidi H, et al. Emergence of extensively drug-resistant Salmonella Typhi infections among travelers to or from Pakistan—United States, 2016–2018. MMWR Morb Mortal Wkly Rep. 2019;68(1):11.CrossRef Chatham-Stephens K, Medalla F, Hughes M, Appiah GD, Aubert RD, Caidi H, et al. Emergence of extensively drug-resistant Salmonella Typhi infections among travelers to or from Pakistan—United States, 2016–2018. MMWR Morb Mortal Wkly Rep. 2019;68(1):11.CrossRef
14.
go back to reference Godbole GS, Day MR, Murthy S, Chattaway MA, Nair S. First report of CTX-M-15 Salmonella Typhi from England. Clin Infect Dis. 2018;66(12):1976–7.CrossRef Godbole GS, Day MR, Murthy S, Chattaway MA, Nair S. First report of CTX-M-15 Salmonella Typhi from England. Clin Infect Dis. 2018;66(12):1976–7.CrossRef
15.
go back to reference Ingle DJ, Andersson P, Valcanis M, Wilmot M, Easton M, Lane C, et al. Genomic epidemiology and antimicrobial resistance mechanisms of imported typhoid in Australia. Antimicrob Agents Chemother. 2021;65(12):e01200-e1221.CrossRef Ingle DJ, Andersson P, Valcanis M, Wilmot M, Easton M, Lane C, et al. Genomic epidemiology and antimicrobial resistance mechanisms of imported typhoid in Australia. Antimicrob Agents Chemother. 2021;65(12):e01200-e1221.CrossRef
16.
go back to reference Engsbro AL, Jespersen HSR, Goldschmidt MI, Mollerup S, Worning P, Pedersen MS, et al. Ceftriaxone-resistant Salmonella enterica serotype Typhi in a pregnant traveller returning from Karachi, Pakistan to Denmark, 2019. Eurosurveillance. 2019;24(21):1900289.CrossRef Engsbro AL, Jespersen HSR, Goldschmidt MI, Mollerup S, Worning P, Pedersen MS, et al. Ceftriaxone-resistant Salmonella enterica serotype Typhi in a pregnant traveller returning from Karachi, Pakistan to Denmark, 2019. Eurosurveillance. 2019;24(21):1900289.CrossRef
17.
go back to reference Wong W, Rawahi HA, Patel S, Yau Y, Eshaghi A, Zittermann S, et al. The first Canadian pediatric case of extensively drug-resistant Salmonella Typhi originating from an outbreak in Pakistan and its implication for empiric antimicrobial choices. IDCases. 2019;15: e00492.CrossRef Wong W, Rawahi HA, Patel S, Yau Y, Eshaghi A, Zittermann S, et al. The first Canadian pediatric case of extensively drug-resistant Salmonella Typhi originating from an outbreak in Pakistan and its implication for empiric antimicrobial choices. IDCases. 2019;15: e00492.CrossRef
18.
go back to reference Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.CrossRef Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.CrossRef
19.
go back to reference Nolan VC, Harrison J, Cox JAG. Dissecting the antimicrobial composition of honey. Antibiotics. 2019;8(4):251.CrossRef Nolan VC, Harrison J, Cox JAG. Dissecting the antimicrobial composition of honey. Antibiotics. 2019;8(4):251.CrossRef
20.
go back to reference da Silva PM, Gonzaga LV, Biluca FC, Schulz M, Vitali L, Micke GA, et al. Stability of Brazilian Apis mellifera L. honey during prolonged storage: physicochemical parameters and bioactive compounds. LWT Food Sci Technol. 2020;129:109521.CrossRef da Silva PM, Gonzaga LV, Biluca FC, Schulz M, Vitali L, Micke GA, et al. Stability of Brazilian Apis mellifera L. honey during prolonged storage: physicochemical parameters and bioactive compounds. LWT Food Sci Technol. 2020;129:109521.CrossRef
21.
go back to reference Hussain MB, Hannan A, Akhtar N, Fayyaz GQ, Imran M, Saleem S, et al. Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. BMC Complement Altern Med. 2015;15(1):32.CrossRef Hussain MB, Hannan A, Akhtar N, Fayyaz GQ, Imran M, Saleem S, et al. Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. BMC Complement Altern Med. 2015;15(1):32.CrossRef
22.
go back to reference CLSI. Performance standards for antimicrobial susceptibility testing. 32nd ed. Wayne, PA USA: Clinical and Laboratory Standard Institute (CLSI); 2022. CLSI. Performance standards for antimicrobial susceptibility testing. 32nd ed. Wayne, PA USA: Clinical and Laboratory Standard Institute (CLSI); 2022.
23.
go back to reference Ejaz H, Alzahrani B, Hamad MFS, Abosalif KOA, Junaid K, Abdalla AE, et al. Molecular analysis of the antibiotic resistant NDM-1 gene in clinical isolates of Enterobacteriaceae. Clin Lab. 2020;66(3):409–17. Ejaz H, Alzahrani B, Hamad MFS, Abosalif KOA, Junaid K, Abdalla AE, et al. Molecular analysis of the antibiotic resistant NDM-1 gene in clinical isolates of Enterobacteriaceae. Clin Lab. 2020;66(3):409–17.
24.
go back to reference Ejaz H, Younas S, Abosalif KOA, Junaid K, Alzahrani B, Alsrhani A, et al. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE. 2021;16(1): e0245126.CrossRef Ejaz H, Younas S, Abosalif KOA, Junaid K, Alzahrani B, Alsrhani A, et al. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE. 2021;16(1): e0245126.CrossRef
25.
go back to reference Qamar MU, Saleem S, Toleman MA, Saqalein M, Waseem M, Nisar MA, et al. In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11. Future Microbiol. 2018;13(1):13–26.CrossRef Qamar MU, Saleem S, Toleman MA, Saqalein M, Waseem M, Nisar MA, et al. In vitro and in vivo activity of Manuka honey against NDM-1-producing Klebsiella pneumoniae ST11. Future Microbiol. 2018;13(1):13–26.CrossRef
26.
go back to reference Qamar FN, Yousafzai MT, Dehraj IF, Shakoor S, Irfan S, Hotwani A, et al. Antimicrobial Resistance in Typhoidal Salmonella: Surveillance for Enteric Fever in Asia Project, 2016–2019. Clin Infect Dis. 2020;71(Suppl 3):S276–84.CrossRef Qamar FN, Yousafzai MT, Dehraj IF, Shakoor S, Irfan S, Hotwani A, et al. Antimicrobial Resistance in Typhoidal Salmonella: Surveillance for Enteric Fever in Asia Project, 2016–2019. Clin Infect Dis. 2020;71(Suppl 3):S276–84.CrossRef
28.
go back to reference Dyson ZA, Klemm EJ, Palmer S, Dougan G. Antibiotic Resistance and Typhoid. Clin Infect Dis. 2019;68(Suppl 2):S165–70.CrossRef Dyson ZA, Klemm EJ, Palmer S, Dougan G. Antibiotic Resistance and Typhoid. Clin Infect Dis. 2019;68(Suppl 2):S165–70.CrossRef
29.
go back to reference Butt MH, Saleem A, Javed SO, Ullah I, Rehman MU, Islam N, et al. Rising XDR-typhoid fever cases in Pakistan: are we heading back to the pre-antibiotic era? Front Public Health. 2022;9:794868.CrossRef Butt MH, Saleem A, Javed SO, Ullah I, Rehman MU, Islam N, et al. Rising XDR-typhoid fever cases in Pakistan: are we heading back to the pre-antibiotic era? Front Public Health. 2022;9:794868.CrossRef
30.
go back to reference Jacob JJ, Pragasam AK, Vasudevan K, Veeraraghavan B, Kang G, John J, et al. Salmonella Typhi acquires diverse plasmids from other Enterobacteriaceae to develop cephalosporin resistance. Genomics. 2021;113(4):2171–6.CrossRef Jacob JJ, Pragasam AK, Vasudevan K, Veeraraghavan B, Kang G, John J, et al. Salmonella Typhi acquires diverse plasmids from other Enterobacteriaceae to develop cephalosporin resistance. Genomics. 2021;113(4):2171–6.CrossRef
31.
go back to reference Butler CC, Dorward J, Yu L-M, Gbinigie O, Hayward G, Saville BR, et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021;397(10279):1063–74.CrossRef Butler CC, Dorward J, Yu L-M, Gbinigie O, Hayward G, Saville BR, et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. Lancet. 2021;397(10279):1063–74.CrossRef
32.
go back to reference Shaikh H. Excessive Use of Azithromycin in Pakistan amidst the Covid pandemic. J Pak Med Assoc. 2021;71(10):2489. Shaikh H. Excessive Use of Azithromycin in Pakistan amidst the Covid pandemic. J Pak Med Assoc. 2021;71(10):2489.
33.
go back to reference Bogdanić N, Močibob L, Vidović T, Soldo A, Begovać J. Azithromycin consumption during the COVID-19 pandemic in Croatia, 2020. PLoS ONE. 2022;17(2): e0263437.CrossRef Bogdanić N, Močibob L, Vidović T, Soldo A, Begovać J. Azithromycin consumption during the COVID-19 pandemic in Croatia, 2020. PLoS ONE. 2022;17(2): e0263437.CrossRef
34.
go back to reference Iqbal J, Dehraj IF, Carey ME, Dyson ZA, Garrett D, Seidman JC, et al. A race against time: reduced azithromycin susceptibility in Salmonella enterica Serovar Typhi in Pakistan. mSphere. 2020;5(4):e00215-20.CrossRef Iqbal J, Dehraj IF, Carey ME, Dyson ZA, Garrett D, Seidman JC, et al. A race against time: reduced azithromycin susceptibility in Salmonella enterica Serovar Typhi in Pakistan. mSphere. 2020;5(4):e00215-20.CrossRef
35.
go back to reference Yuan J, Yuan W, Guo Y, Wu Q, Wang F, Xuan H. Anti-Biofilm Activities of Chinese Poplar Propolis Essential Oil against Streptococcus mutans. Nutrients. 2022;14(16):3290.CrossRef Yuan J, Yuan W, Guo Y, Wu Q, Wang F, Xuan H. Anti-Biofilm Activities of Chinese Poplar Propolis Essential Oil against Streptococcus mutans. Nutrients. 2022;14(16):3290.CrossRef
36.
go back to reference Spengler G, Gajdács M, Donadu MG, Usai M, Marchetti M, Ferrari M, et al. Evaluation of the antimicrobial and Antivirulent potential of essential oils isolated from Juniperus oxycedrus L. ssp. macrocarpa aerial parts. Microorganisms. 2022;10(4):758.CrossRef Spengler G, Gajdács M, Donadu MG, Usai M, Marchetti M, Ferrari M, et al. Evaluation of the antimicrobial and Antivirulent potential of essential oils isolated from Juniperus oxycedrus L. ssp. macrocarpa aerial parts. Microorganisms. 2022;10(4):758.CrossRef
37.
go back to reference Rossi C, Chaves-López C, Serio A, Casaccia M, Maggio F, Paparella A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: an updated review. Crit Rev Food Sci Nutr. 2022;62(8):2172–91.CrossRef Rossi C, Chaves-López C, Serio A, Casaccia M, Maggio F, Paparella A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: an updated review. Crit Rev Food Sci Nutr. 2022;62(8):2172–91.CrossRef
38.
go back to reference Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms. 2021;9(10):2041.CrossRef Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms. 2021;9(10):2041.CrossRef
39.
go back to reference Green KJ, Lawag IL, Locher C, Hammer KA. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS ONE. 2022;17(7): e0272376.CrossRef Green KJ, Lawag IL, Locher C, Hammer KA. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics. PLoS ONE. 2022;17(7): e0272376.CrossRef
40.
go back to reference Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011;1(2):154–60.CrossRef Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011;1(2):154–60.CrossRef
41.
go back to reference Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM. Honey: another alternative in the fight against antibiotic-resistant bacteria? Antibiotics (Basel). 2020;9(11):774.CrossRef Combarros-Fuertes P, Fresno JM, Estevinho MM, Sousa-Pimenta M, Tornadijo ME, Estevinho LM. Honey: another alternative in the fight against antibiotic-resistant bacteria? Antibiotics (Basel). 2020;9(11):774.CrossRef
42.
go back to reference Aljuhaimi F, Özcan MM, Ghafoor K, Babiker EE. Determination of physicochemical properties of multifloral honeys stored in different containers. J Food Process Preserv. 2018;42(1): e13379.CrossRef Aljuhaimi F, Özcan MM, Ghafoor K, Babiker EE. Determination of physicochemical properties of multifloral honeys stored in different containers. J Food Process Preserv. 2018;42(1): e13379.CrossRef
43.
go back to reference Wang X, Gheldof N, Engeseth N. Effect of processing and storage on antioxidant capacity of honey. Food Chem Toxicol. 2004;69(2):fct96-101. Wang X, Gheldof N, Engeseth N. Effect of processing and storage on antioxidant capacity of honey. Food Chem Toxicol. 2004;69(2):fct96-101.
44.
go back to reference Zarei M, Fazlara A, Alijani N. Evaluation of the changes in physicochemical and antioxidant properties of honey during storage. Funct Foods Health Dis. 2019;9(9):593–605.CrossRef Zarei M, Fazlara A, Alijani N. Evaluation of the changes in physicochemical and antioxidant properties of honey during storage. Funct Foods Health Dis. 2019;9(9):593–605.CrossRef
45.
go back to reference Wadi MA. In vitro antibacterial activity of different honey samples against clinical isolates. Biomed Res Int. 2022;2022:1560050.CrossRef Wadi MA. In vitro antibacterial activity of different honey samples against clinical isolates. Biomed Res Int. 2022;2022:1560050.CrossRef
46.
go back to reference Yousaf I, Ishaq I, Hussain MB, Inaam S, Saleem S, Qamar MU. Antibacterial activity of Pakistani Beri honey compared with silver sulfadiazine on infected wounds: a clinical trial. J Wound Care. 2019;28(5):291–6.CrossRef Yousaf I, Ishaq I, Hussain MB, Inaam S, Saleem S, Qamar MU. Antibacterial activity of Pakistani Beri honey compared with silver sulfadiazine on infected wounds: a clinical trial. J Wound Care. 2019;28(5):291–6.CrossRef
47.
go back to reference Qamar MU, Saleem S, Arshad U, Rasheed MF, Ejaz H, Shahzad N, et al. Antibacterial efficacy of Manuka honey against New Delhi Metallo-β-Lactamase producing gram negative bacteria isolated from blood cultures. Paki J Zool. 2017;49(6):1937–2341. Qamar MU, Saleem S, Arshad U, Rasheed MF, Ejaz H, Shahzad N, et al. Antibacterial efficacy of Manuka honey against New Delhi Metallo-β-Lactamase producing gram negative bacteria isolated from blood cultures. Paki J Zool. 2017;49(6):1937–2341.
48.
go back to reference Mandal S, DebMandal M, Pal NK, Saha K. Antibacterial activity of honey against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica serovar Typhi. Asian Pac J Trop Med. 2010;3(12):961–4.CrossRef Mandal S, DebMandal M, Pal NK, Saha K. Antibacterial activity of honey against clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica serovar Typhi. Asian Pac J Trop Med. 2010;3(12):961–4.CrossRef
49.
go back to reference Girma A, Seo W, She RC. Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE. 2019;14(10): e0224495.CrossRef Girma A, Seo W, She RC. Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE. 2019;14(10): e0224495.CrossRef
50.
go back to reference Mohammadzamani Z, Khorshidi A, Khaledi A, Shakerimoghaddam A, Moosavi GA, Piroozmand A. Inhibitory effects of Cinnamaldehyde, Carvacrol, and honey on the expression of exoS and ampC genes in multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb Pathog. 2020;140: 103946.CrossRef Mohammadzamani Z, Khorshidi A, Khaledi A, Shakerimoghaddam A, Moosavi GA, Piroozmand A. Inhibitory effects of Cinnamaldehyde, Carvacrol, and honey on the expression of exoS and ampC genes in multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb Pathog. 2020;140: 103946.CrossRef
51.
go back to reference Almasaudi S. The antibacterial activities of honey. Saudi J Biol Sci. 2021;28(4):2188–96.CrossRef Almasaudi S. The antibacterial activities of honey. Saudi J Biol Sci. 2021;28(4):2188–96.CrossRef
52.
go back to reference Scepankova H, Saraiva JA, Estevinho LM. Honey health benefits and uses in medicine. In: Bee products-Chemical and biological properties. New York City: Springer International Publishing; 2017. p. 83–96. Scepankova H, Saraiva JA, Estevinho LM. Honey health benefits and uses in medicine. In: Bee products-Chemical and biological properties. New York City: Springer International Publishing; 2017. p. 83–96.
Metadata
Title
Antibacterial efficacy of indigenous Pakistani honey against extensively drug-resistant clinical isolates of Salmonella enterica serovar Typhi: an alternative option to combat antimicrobial resistance
Authors
Hasan Ejaz
Mamoona Sultan
Muhammad Usman Qamar
Kashaf Junaid
Nasir Rasool
Awadh Alanazi
Mashael W. Alruways
Bi Bi Zainab Mazhari
Yasir Alruwaili
Syed Nasir Abbas Bukhari
Sonia Younas
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-03870-8

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue