Skip to main content
Top
Published in: Cancer Imaging 1/2024

Open Access 01-12-2024 | Research article

Amide proton transfer-weighted imaging and stretch-exponential model DWI based 18F-FDG PET/MRI for differentiation of benign and malignant solitary pulmonary lesions

Authors: Nan Meng, Chen Song, Jing Sun, Xue Liu, Lei Shen, Yihang Zhou, Bo Dai, Xuan Yu, Yaping Wu, Jianmin Yuan, Yang Yang, Zhe Wang, Meiyun Wang

Published in: Cancer Imaging | Issue 1/2024

Login to get access

Abstract

Objectives

To differentiate benign and malignant solitary pulmonary lesions (SPLs) by amide proton transfer-weighted imaging (APTWI), mono-exponential model DWI (MEM-DWI), stretched exponential model DWI (SEM-DWI), and 18F-FDG PET-derived parameters.

Methods

A total of 120 SPLs patients underwent chest 18F-FDG PET/MRI were enrolled, including 84 in the training set (28 benign and 56 malignant) and 36 in the test set (13 benign and 23 malignant). MTRasym(3.5 ppm), ADC, DDC, α, SUVmax, MTV, and TLG were compared. The area under receiver-operator characteristic curve (AUC) was used to assess diagnostic efficacy. The Logistic regression analysis was used to identify independent predictors and establish prediction model.

Results

SUVmax, MTV, TLG, α, and MTRasym(3.5 ppm) values were significantly lower and ADC, DDC values were significantly higher in benign SPLs than malignant SPLs (all P < 0.01). SUVmax, ADC, and MTRasym(3.5 ppm) were independent predictors. Within the training set, the prediction model based on these independent predictors demonstrated optimal diagnostic efficacy (AUC, 0.976; sensitivity, 94.64%; specificity, 92.86%), surpassing any single parameter with statistical significance. Similarly, within the test set, the prediction model exhibited optimal diagnostic efficacy. The calibration curves and DCA revealed that the prediction model not only had good consistency but was also able to provide a significant benefit to the related patients, both in the training and test sets.

Conclusion

The SUVmax, ADC, and MTRasym(3.5 ppm) were independent predictors for differentiation of benign and malignant SPLs, and the prediction model based on them had an optimal diagnostic efficacy.
Literature
1.
go back to reference National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRef National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRef
2.
go back to reference Zhou Y, Ma XL, Zhang T, et al. Use of radiomics based on 18F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach. Eur J Nucl Med Mol Imaging. 2021;48:2904–13.CrossRefPubMed Zhou Y, Ma XL, Zhang T, et al. Use of radiomics based on 18F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach. Eur J Nucl Med Mol Imaging. 2021;48:2904–13.CrossRefPubMed
3.
go back to reference Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: a review. JAMA. 2022;327:264–73.CrossRefPubMed Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: a review. JAMA. 2022;327:264–73.CrossRefPubMed
4.
go back to reference Zhu LH, Wang FN, Wang YW, et al. Differentiation between solitary pulmonary inflammatory lesions and solitary cancer using gemstone spectral imaging. J Comput Assist Tomogr. 2022;46:300–7.CrossRefPubMed Zhu LH, Wang FN, Wang YW, et al. Differentiation between solitary pulmonary inflammatory lesions and solitary cancer using gemstone spectral imaging. J Comput Assist Tomogr. 2022;46:300–7.CrossRefPubMed
5.
go back to reference Harzheim D, Eberhardt R, Hoffmann H, et al. The solitary pulmonary nodule. Respiration. 2015;90(2):160–72.CrossRefPubMed Harzheim D, Eberhardt R, Hoffmann H, et al. The solitary pulmonary nodule. Respiration. 2015;90(2):160–72.CrossRefPubMed
6.
go back to reference Chan EY, Gaur P, Ge Y, et al. Management of the solitary pulmonary nodule. Arch Pathol Lab Med. 2017;141:927–31.CrossRefPubMed Chan EY, Gaur P, Ge Y, et al. Management of the solitary pulmonary nodule. Arch Pathol Lab Med. 2017;141:927–31.CrossRefPubMed
7.
go back to reference Heerink WJ, de Bock GH, de Jonge GJ, Groen HJ, Vliegenthart R, Oudkerk M. Complication rates of CT-guided transthoracic lung biopsy: meta-analysis. Eur Radiol. 2017;27:138–48.CrossRefPubMed Heerink WJ, de Bock GH, de Jonge GJ, Groen HJ, Vliegenthart R, Oudkerk M. Complication rates of CT-guided transthoracic lung biopsy: meta-analysis. Eur Radiol. 2017;27:138–48.CrossRefPubMed
8.
go back to reference Dey P, Ghosh RK. Fine-needle aspiration cytology of non-small cell lung carcinoma: a paradigm shift. Diagn Cytopathol. 2019;47:351–8.CrossRefPubMed Dey P, Ghosh RK. Fine-needle aspiration cytology of non-small cell lung carcinoma: a paradigm shift. Diagn Cytopathol. 2019;47:351–8.CrossRefPubMed
10.
go back to reference Zhou J, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.CrossRefPubMed Zhou J, Payen JF, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.CrossRefPubMed
11.
go back to reference Bennett KM, Schmainda KM, Bennett RT, et al. (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med. 2003;50:727–34.CrossRefPubMed Bennett KM, Schmainda KM, Bennett RT, et al. (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med. 2003;50:727–34.CrossRefPubMed
12.
go back to reference Basso Dias A, Zanon M, Altmayer S, et al. Fluorine 18-FDG PET/CT and Diffusion-weighted MRI for Malignant versus Benign Pulmonary Lesions: A Meta-Analysis. Radiology. 2019;290:525–34.CrossRefPubMed Basso Dias A, Zanon M, Altmayer S, et al. Fluorine 18-FDG PET/CT and Diffusion-weighted MRI for Malignant versus Benign Pulmonary Lesions: A Meta-Analysis. Radiology. 2019;290:525–34.CrossRefPubMed
13.
go back to reference Ohno Y, Yui M, Koyama H, et al. Chemical Exchange Saturation Transfer MR Imaging: Preliminary Results for Differentiation of Malignant and Benign Thoracic Lesions. Radiology. 2016;279:578–89.CrossRefPubMed Ohno Y, Yui M, Koyama H, et al. Chemical Exchange Saturation Transfer MR Imaging: Preliminary Results for Differentiation of Malignant and Benign Thoracic Lesions. Radiology. 2016;279:578–89.CrossRefPubMed
14.
go back to reference Ohno Y, Kishida Y, Seki S, et al. Amide proton transfer-weighted imaging to differentiate malignant from benign pulmonary lesions: Comparison with diffusion-weighted imaging and FDG-PET/CT. J Magn Reson Imaging. 2018;47:1013–21.CrossRefPubMed Ohno Y, Kishida Y, Seki S, et al. Amide proton transfer-weighted imaging to differentiate malignant from benign pulmonary lesions: Comparison with diffusion-weighted imaging and FDG-PET/CT. J Magn Reson Imaging. 2018;47:1013–21.CrossRefPubMed
15.
go back to reference Chen S, Gu Y, Yu H, et al. (2021) NEMA NU2-2012 performance measurements of the United Imaging uPMR790: an integrated PET/MR system. Eur J Nucl Med Mol Imaging. 2021;48:1726–35.CrossRefPubMed Chen S, Gu Y, Yu H, et al. (2021) NEMA NU2-2012 performance measurements of the United Imaging uPMR790: an integrated PET/MR system. Eur J Nucl Med Mol Imaging. 2021;48:1726–35.CrossRefPubMed
16.
go back to reference Liu G, Cao T, Hu L, et al. Validation of MR-Based Attenuation Correction of a Newly Released Whole-Body Simultaneous PET/MR System. Biomed Res Int. 2019;2019:8213215.CrossRefPubMedPubMedCentral Liu G, Cao T, Hu L, et al. Validation of MR-Based Attenuation Correction of a Newly Released Whole-Body Simultaneous PET/MR System. Biomed Res Int. 2019;2019:8213215.CrossRefPubMedPubMedCentral
17.
go back to reference Lv Z, Fan J, Xu J, et al. Value of 18F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients. Eur J Nucl Med Mol Imaging. 2018;45:735–50.CrossRefPubMed Lv Z, Fan J, Xu J, et al. Value of 18F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients. Eur J Nucl Med Mol Imaging. 2018;45:735–50.CrossRefPubMed
18.
go back to reference Lin L, Xue Y, Duan Q, et al. Grading meningiomas using mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging. Clin Radiol. 2019;74:651.e15-651.e23.CrossRefPubMed Lin L, Xue Y, Duan Q, et al. Grading meningiomas using mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging. Clin Radiol. 2019;74:651.e15-651.e23.CrossRefPubMed
19.
go back to reference Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015;10:1243–60.CrossRefPubMed Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015;10:1243–60.CrossRefPubMed
20.
go back to reference Shieh G. Choosing the best index for the average score intraclass correlation coefficient. Behav Res Methods. 2016;48:994–1003.CrossRefADSPubMed Shieh G. Choosing the best index for the average score intraclass correlation coefficient. Behav Res Methods. 2016;48:994–1003.CrossRefADSPubMed
21.
go back to reference Umutlu L, Beyer T, Grueneisen JS, et al. Whole-Body [18F]-FDG-PET/MRI for Oncology: A Consensus Recommendation. Konsensempfehlungen zur Anwendung der Ganzkörper [18F]-FDG-PET/MRT in der onkologischen Bildgebung. Rofo. 2019;191:289–97.CrossRefPubMed Umutlu L, Beyer T, Grueneisen JS, et al. Whole-Body [18F]-FDG-PET/MRI for Oncology: A Consensus Recommendation. Konsensempfehlungen zur Anwendung der Ganzkörper [18F]-FDG-PET/MRT in der onkologischen Bildgebung. Rofo. 2019;191:289–97.CrossRefPubMed
22.
go back to reference Erdoğan M, Evrimler Ş, Aydın H, et al. Solitary Pulmonary Nodule: Morphological Effects on Metabolic Activity Assessment. Mol Imaging Radionucl Ther. 2019;28:112–9.CrossRefPubMedPubMedCentral Erdoğan M, Evrimler Ş, Aydın H, et al. Solitary Pulmonary Nodule: Morphological Effects on Metabolic Activity Assessment. Mol Imaging Radionucl Ther. 2019;28:112–9.CrossRefPubMedPubMedCentral
23.
go back to reference Li W, Pang H, Liu Q, et al. The role of 18F-FDG PET or 18F-FDG-PET/CT in the evaluation of solitary pulmonary nodules. Eur J Radiol. 2015;84:2032–7.CrossRefPubMed Li W, Pang H, Liu Q, et al. The role of 18F-FDG PET or 18F-FDG-PET/CT in the evaluation of solitary pulmonary nodules. Eur J Radiol. 2015;84:2032–7.CrossRefPubMed
24.
go back to reference Owens C, Hindocha S, Lee R, et al. The lung cancers: staging and response, CT, 18F-FDG PET/CT, MRI, DWI: review and new perspectives. Br J Radiol. 2023;96:20220339.CrossRefPubMedPubMedCentral Owens C, Hindocha S, Lee R, et al. The lung cancers: staging and response, CT, 18F-FDG PET/CT, MRI, DWI: review and new perspectives. Br J Radiol. 2023;96:20220339.CrossRefPubMedPubMedCentral
25.
go back to reference Chen Y, Han Q, Huang Z, et al. Value of IVIM in Differential Diagnoses between Benign and Malignant Solitary Lung Nodules and Masses: a meta-analysis. Front Surg. 2022;9:817443.CrossRefPubMedPubMedCentral Chen Y, Han Q, Huang Z, et al. Value of IVIM in Differential Diagnoses between Benign and Malignant Solitary Lung Nodules and Masses: a meta-analysis. Front Surg. 2022;9:817443.CrossRefPubMedPubMedCentral
26.
go back to reference Meng N, Fang T, Feng P, et al. Amide Proton Transfer-Weighted Imaging and Multiple Models Diffusion-Weighted Imaging Facilitates Preoperative Risk Stratification of Early-Stage Endometrial Carcinoma. J Magn Reson Imaging. 2021;54:1200–11.CrossRefPubMed Meng N, Fang T, Feng P, et al. Amide Proton Transfer-Weighted Imaging and Multiple Models Diffusion-Weighted Imaging Facilitates Preoperative Risk Stratification of Early-Stage Endometrial Carcinoma. J Magn Reson Imaging. 2021;54:1200–11.CrossRefPubMed
27.
go back to reference Suo S, Cheng F, Cao M, et al. Multiparametric diffusion-weighted imaging in breast lesions: association with pathologic diagnosis and prognostic factors. J Magn Reson Imaging. 2017;46:740–50.CrossRefPubMed Suo S, Cheng F, Cao M, et al. Multiparametric diffusion-weighted imaging in breast lesions: association with pathologic diagnosis and prognostic factors. J Magn Reson Imaging. 2017;46:740–50.CrossRefPubMed
28.
go back to reference Jia Y, Song G, Wu R, et al. Intravoxel incoherent motion DWI with different mathematical models in predicting rectal adenoma with and without canceration. Eur J Radiol. 2022;155:110496.CrossRefPubMed Jia Y, Song G, Wu R, et al. Intravoxel incoherent motion DWI with different mathematical models in predicting rectal adenoma with and without canceration. Eur J Radiol. 2022;155:110496.CrossRefPubMed
29.
go back to reference Inamura K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: tumor initiation and progression. Int J Mol Sci. 2018;19:1259.CrossRefPubMedPubMedCentral Inamura K. Clinicopathological characteristics and mutations driving development of early lung adenocarcinoma: tumor initiation and progression. Int J Mol Sci. 2018;19:1259.CrossRefPubMedPubMedCentral
30.
go back to reference Kamimura K, Nakajo M, Yoneyama T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions. Jpn J Radiol. 2019;37:109–16.CrossRefPubMed Kamimura K, Nakajo M, Yoneyama T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions. Jpn J Radiol. 2019;37:109–16.CrossRefPubMed
31.
go back to reference Kamitani T, Sagiyama K, Togao O, et al. Amide proton transfer (APT) imaging of parotid tumors: Differentiation of malignant and benign tumors. Eur J Radiol. 2020;129:109047.CrossRefPubMed Kamitani T, Sagiyama K, Togao O, et al. Amide proton transfer (APT) imaging of parotid tumors: Differentiation of malignant and benign tumors. Eur J Radiol. 2020;129:109047.CrossRefPubMed
32.
go back to reference Foo LS, Harston G, Mehndiratta A, et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003–2020). Quant Imaging Med Surg. 2021;11:3797–811.CrossRefPubMedPubMedCentral Foo LS, Harston G, Mehndiratta A, et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003–2020). Quant Imaging Med Surg. 2021;11:3797–811.CrossRefPubMedPubMedCentral
33.
go back to reference Tempany CM, Jayender J, Kapur T, et al. Multimodal imaging for improved diagnosis and treatment of cancers. Cancer. 2015;121:817–27.CrossRefPubMed Tempany CM, Jayender J, Kapur T, et al. Multimodal imaging for improved diagnosis and treatment of cancers. Cancer. 2015;121:817–27.CrossRefPubMed
34.
go back to reference Meng N, Fu F, Sun J, et al. Sensitivity and specificity of amide proton transfer-weighted imaging for assessing programmed death-ligand 1 status in non-small cell lung cancer: a comparative study with intravoxel incoherent motion and 18F-FDG PET. Quant Imaging Med Surg. 2022;12:4474–87.CrossRefPubMedPubMedCentral Meng N, Fu F, Sun J, et al. Sensitivity and specificity of amide proton transfer-weighted imaging for assessing programmed death-ligand 1 status in non-small cell lung cancer: a comparative study with intravoxel incoherent motion and 18F-FDG PET. Quant Imaging Med Surg. 2022;12:4474–87.CrossRefPubMedPubMedCentral
35.
go back to reference Wang H, Yan R, Li Z, et al. (2023) Quantitative dynamic contrast-enhanced parameters and intravoxel incoherent motion facilitate the prediction of TP53 status and risk stratification of early-stage endometrial carcinoma. Radiol Oncol. 2023;57:257–69.CrossRefPubMedPubMedCentral Wang H, Yan R, Li Z, et al. (2023) Quantitative dynamic contrast-enhanced parameters and intravoxel incoherent motion facilitate the prediction of TP53 status and risk stratification of early-stage endometrial carcinoma. Radiol Oncol. 2023;57:257–69.CrossRefPubMedPubMedCentral
Metadata
Title
Amide proton transfer-weighted imaging and stretch-exponential model DWI based 18F-FDG PET/MRI for differentiation of benign and malignant solitary pulmonary lesions
Authors
Nan Meng
Chen Song
Jing Sun
Xue Liu
Lei Shen
Yihang Zhou
Bo Dai
Xuan Yu
Yaping Wu
Jianmin Yuan
Yang Yang
Zhe Wang
Meiyun Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Imaging / Issue 1/2024
Electronic ISSN: 1470-7330
DOI
https://doi.org/10.1186/s40644-024-00677-9

Other articles of this Issue 1/2024

Cancer Imaging 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine