Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

Microglia specific deletion of miR-155 in Alzheimer’s disease mouse models reduces amyloid-β pathology but causes hyperexcitability and seizures

Authors: Macarena S. Aloi, Katherine E. Prater, Raymond E. A. Sánchez, Asad Beck, Jasmine L. Pathan, Stephanie Davidson, Angela Wilson, C. Dirk Keene, Horacio de la Iglesia, Suman Jayadev, Gwenn A. Garden

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Alzheimer’s Disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) as well as CNS and systemic inflammation. Microglia, the myeloid cells resident in the CNS, use microRNAs to rapidly respond to inflammatory signals. MicroRNAs (miRNAs) modulate inflammatory responses in microglia, and miRNA profiles are altered in Alzheimer’s disease (AD) patients. Expression of the pro-inflammatory miRNA, miR-155, is increased in the AD brain. However, the role of miR-155 in AD pathogenesis is not well-understood. We hypothesized that miR-155 participates in AD pathophysiology by regulating microglia internalization and degradation of Aβ. We used CX3CR1CreER/+ to drive-inducible, microglia-specific deletion of floxed miR-155 alleles in two AD mouse models. Microglia-specific inducible deletion of miR-155 in microglia increased anti-inflammatory gene expression while reducing insoluble Aβ1-42 and plaque area. Yet, microglia-specific miR-155 deletion led to early-onset hyperexcitability, recurring spontaneous seizures, and seizure-related mortality. The mechanism behind hyperexcitability involved microglia-mediated synaptic pruning as miR-155 deletion altered microglia internalization of synaptic material. These data identify miR-155 as a novel modulator of microglia Aβ internalization and synaptic pruning, influencing synaptic homeostasis in the setting of AD pathology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol Neurodegener. 2021;16(1):59.PubMedPubMedCentralCrossRef Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol Neurodegener. 2021;16(1):59.PubMedPubMedCentralCrossRef
2.
go back to reference Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.PubMedCrossRef Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.PubMedCrossRef
3.
go back to reference Horváth A, Szűcs A, Barcs G, Noebels JL, Kamondi A. Epileptic seizures in Alzheimer disease: a review. Alzheimer Dis Assoc Disord. 2016;30(2):186–92.PubMedCrossRef Horváth A, Szűcs A, Barcs G, Noebels JL, Kamondi A. Epileptic seizures in Alzheimer disease: a review. Alzheimer Dis Assoc Disord. 2016;30(2):186–92.PubMedCrossRef
4.
go back to reference Krüger J, Moilanen V, Majamaa K, Remes AM. Molecular genetic analysis of the APP, PSEN1, and PSEN2 genes in Finnish patients with early-onset Alzheimer disease and frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord. 2012;26(3):272–6.PubMedCrossRef Krüger J, Moilanen V, Majamaa K, Remes AM. Molecular genetic analysis of the APP, PSEN1, and PSEN2 genes in Finnish patients with early-onset Alzheimer disease and frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord. 2012;26(3):272–6.PubMedCrossRef
5.
go back to reference Mukherjee S, Heath L, Preuss C, Jayadev S, Garden GA, Greenwood AK, et al. Molecular estimation of neurodegeneration pseudotime in older brains. Nat Commun. 2020;11(1):5781.PubMedPubMedCentralCrossRef Mukherjee S, Heath L, Preuss C, Jayadev S, Garden GA, Greenwood AK, et al. Molecular estimation of neurodegeneration pseudotime in older brains. Nat Commun. 2020;11(1):5781.PubMedPubMedCentralCrossRef
7.
go back to reference Fu CH, Iascone DM, Petrof I, Hazra A, Zhang X, Pyfer MS, et al. Early seizure activity accelerates depletion of hippocampal neural stem cells and impairs spatial discrimination in an Alzheimer’s disease model. Cell Rep. 2019;27(13):3741-3751.e4.PubMedPubMedCentralCrossRef Fu CH, Iascone DM, Petrof I, Hazra A, Zhang X, Pyfer MS, et al. Early seizure activity accelerates depletion of hippocampal neural stem cells and impairs spatial discrimination in an Alzheimer’s disease model. Cell Rep. 2019;27(13):3741-3751.e4.PubMedPubMedCentralCrossRef
8.
go back to reference Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, et al. An unbalanced synaptic transmission: cause or consequence of the amyloid oligomers neurotoxicity? Int J Mol Sci. 2021;22(11):5991.PubMedPubMedCentralCrossRef Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, et al. An unbalanced synaptic transmission: cause or consequence of the amyloid oligomers neurotoxicity? Int J Mol Sci. 2021;22(11):5991.PubMedPubMedCentralCrossRef
9.
go back to reference Born HA, Kim JY, Savjani RR, Das P, Dabaghian YA, Guo Q, et al. Genetic suppression of transgenic APP rescues hypersynchronous network activity in a mouse model of Alzeimer’s disease. J Neurosci. 2014;34(11):3826–40.PubMedPubMedCentralCrossRef Born HA, Kim JY, Savjani RR, Das P, Dabaghian YA, Guo Q, et al. Genetic suppression of transgenic APP rescues hypersynchronous network activity in a mouse model of Alzeimer’s disease. J Neurosci. 2014;34(11):3826–40.PubMedPubMedCentralCrossRef
10.
go back to reference Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55(5):697–711.PubMedPubMedCentralCrossRef Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55(5):697–711.PubMedPubMedCentralCrossRef
11.
go back to reference Passamonti L, Tsvetanov KA, Jones PS, Bevan-Jones WR, Arnold R, Borchert RJ, et al. Neuroinflammation and functional connectivity in Alzheimer’s disease: interactive influences on cognitive performance. J Neurosci. 2019;39(36):7218–26.PubMedPubMedCentralCrossRef Passamonti L, Tsvetanov KA, Jones PS, Bevan-Jones WR, Arnold R, Borchert RJ, et al. Neuroinflammation and functional connectivity in Alzheimer’s disease: interactive influences on cognitive performance. J Neurosci. 2019;39(36):7218–26.PubMedPubMedCentralCrossRef
12.
go back to reference Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and central nervous system-associated macrophages—from origin to disease modulation. Annu Rev Immunol. 2021;39(1):251–77.PubMedPubMedCentralCrossRef Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and central nervous system-associated macrophages—from origin to disease modulation. Annu Rev Immunol. 2021;39(1):251–77.PubMedPubMedCentralCrossRef
13.
go back to reference Röhr D, Boon BDC, Schuler M, Kremer K, Hoozemans JJM, Bouwman FH, et al. Label-free vibrational imaging of different Aβ plaque types in Alzheimer’s disease reveals sequential events in plaque development. Acta Neuropathol Commun. 2020;8(1):222.PubMedPubMedCentralCrossRef Röhr D, Boon BDC, Schuler M, Kremer K, Hoozemans JJM, Bouwman FH, et al. Label-free vibrational imaging of different Aβ plaque types in Alzheimer’s disease reveals sequential events in plaque development. Acta Neuropathol Commun. 2020;8(1):222.PubMedPubMedCentralCrossRef
14.
go back to reference Doig AJ. Positive feedback loops in Alzheimer’s Disease: the Alzheimer’s feedback hypothesis. :12. Doig AJ. Positive feedback loops in Alzheimer’s Disease: the Alzheimer’s feedback hypothesis. :12.
15.
go back to reference Su W, Aloi MS, Garden GA. MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun. 2016;52:1–8.PubMedCrossRef Su W, Aloi MS, Garden GA. MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun. 2016;52:1–8.PubMedCrossRef
16.
go back to reference Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y. microRNA (miRNA) speciation in Alzheimer’s disease. :9. Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y. microRNA (miRNA) speciation in Alzheimer’s disease. :9.
17.
go back to reference Lukiw WJ, Alexandrov PN, Zhao Y, Hill JM, Bhattacharjee S. Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. NeuroReport. 2012;23(10):621–6.PubMedPubMedCentral Lukiw WJ, Alexandrov PN, Zhao Y, Hill JM, Bhattacharjee S. Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. NeuroReport. 2012;23(10):621–6.PubMedPubMedCentral
18.
go back to reference Li X, Kong D, Chen H, Liu S, Hu H, Wu T, et al. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep. 2016;6(1):21789.PubMedPubMedCentralCrossRef Li X, Kong D, Chen H, Liu S, Hu H, Wu T, et al. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep. 2016;6(1):21789.PubMedPubMedCentralCrossRef
20.
go back to reference Yin H, Song S, Pan X. Knockdown of miR-155 protects microglia against LPS-induced inflammatory injury via targeting RACK1: a novel research for intracranial infection. J Inflamm. 2017;14(1):17.CrossRef Yin H, Song S, Pan X. Knockdown of miR-155 protects microglia against LPS-induced inflammatory injury via targeting RACK1: a novel research for intracranial infection. J Inflamm. 2017;14(1):17.CrossRef
21.
go back to reference Ren Y, Cui Y, Xiong X, Wang C, Zhang Y. Inhibition of microRNA-155 alleviates lipopolysaccharide-induced kidney injury in mice. :10. Ren Y, Cui Y, Xiong X, Wang C, Zhang Y. Inhibition of microRNA-155 alleviates lipopolysaccharide-induced kidney injury in mice. :10.
22.
go back to reference Surbhi, Borniger JC, Russart KLG, Zhang N, Magalang UJ, Nelson RJ. miR-155 deletion modulates lipopolysaccharide-induced sleep in female mice. Chronobiol Int. 2019;36(2):188–202.PubMedCrossRef Surbhi, Borniger JC, Russart KLG, Zhang N, Magalang UJ, Nelson RJ. miR-155 deletion modulates lipopolysaccharide-induced sleep in female mice. Chronobiol Int. 2019;36(2):188–202.PubMedCrossRef
23.
go back to reference O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–94.PubMedPubMedCentralCrossRef O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–94.PubMedPubMedCentralCrossRef
24.
go back to reference Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–11.PubMedPubMedCentralCrossRef Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–11.PubMedPubMedCentralCrossRef
25.
go back to reference Su W, Hopkins S, Nesser NK, Sopher B, Silvestroni A, Ammanuel S, et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol. 2014;192(1):358–66.PubMedCrossRef Su W, Hopkins S, Nesser NK, Sopher B, Silvestroni A, Ammanuel S, et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol. 2014;192(1):358–66.PubMedCrossRef
26.
go back to reference O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci. 2009;106(17):7113–8.PubMedPubMedCentralCrossRef O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci. 2009;106(17):7113–8.PubMedPubMedCentralCrossRef
27.
go back to reference Yao R, Ma YL, Liang W, Li HH, Ma ZJ, Yu X, et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS ONE. 2012;7(10):e46082.PubMedPubMedCentralCrossRef Yao R, Ma YL, Liang W, Li HH, Ma ZJ, Yu X, et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS ONE. 2012;7(10):e46082.PubMedPubMedCentralCrossRef
28.
go back to reference Aloi MS, Prater KE, Sopher B, Davidson S, Jayadev S, Garden GA. The pro-inflammatory microRNA miR -155 influences fibrillar β-Amyloid 1–42 catabolism by microglia. Glia. 2021;69(7):1736–48.PubMedPubMedCentralCrossRef Aloi MS, Prater KE, Sopher B, Davidson S, Jayadev S, Garden GA. The pro-inflammatory microRNA miR -155 influences fibrillar β-Amyloid 1–42 catabolism by microglia. Glia. 2021;69(7):1736–48.PubMedPubMedCentralCrossRef
29.
go back to reference Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91.PubMedCrossRef Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91.PubMedCrossRef
30.
31.
go back to reference Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–33.PubMedPubMedCentralCrossRef Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–33.PubMedPubMedCentralCrossRef
32.
go back to reference Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell. 2007;18(4):1490–6.PubMedPubMedCentralCrossRef Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, et al. Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell. 2007;18(4):1490–6.PubMedPubMedCentralCrossRef
33.
go back to reference Solé-Domènech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer’s disease. Ageing Res Rev. 2016;32:89–103.PubMedPubMedCentralCrossRef Solé-Domènech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer’s disease. Ageing Res Rev. 2016;32:89–103.PubMedPubMedCentralCrossRef
34.
go back to reference Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener. 2019;14(1):20.PubMedPubMedCentralCrossRef Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener. 2019;14(1):20.PubMedPubMedCentralCrossRef
36.
go back to reference Porquet D, Andrés-Benito P, Griñán-Ferré C, Camins A, Ferrer I, Canudas AM, et al. Amyloid and tau pathology of familial Alzheimer’s disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age. 2015;37(1):12.PubMedPubMedCentralCrossRef Porquet D, Andrés-Benito P, Griñán-Ferré C, Camins A, Ferrer I, Canudas AM, et al. Amyloid and tau pathology of familial Alzheimer’s disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age. 2015;37(1):12.PubMedPubMedCentralCrossRef
38.
go back to reference Catterall WA. Dravet syndrome: a sodium channel interneuronopathy. Curr Opin Physiol. 2018;2:42–50.PubMedCrossRef Catterall WA. Dravet syndrome: a sodium channel interneuronopathy. Curr Opin Physiol. 2018;2:42–50.PubMedCrossRef
39.
go back to reference Moradifard S, Hoseinbeyki M, Ganji SM, Minuchehr Z. Analysis of microRNA and gene expression profiles in Alzheimer’s disease: a meta-analysis approach. Sci Rep. 2018;8(1):4767.PubMedPubMedCentralCrossRef Moradifard S, Hoseinbeyki M, Ganji SM, Minuchehr Z. Analysis of microRNA and gene expression profiles in Alzheimer’s disease: a meta-analysis approach. Sci Rep. 2018;8(1):4767.PubMedPubMedCentralCrossRef
40.
go back to reference Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer’s disease: challenges and perspectives. Mol Neurodegener. 2021;16(1):76.PubMedPubMedCentralCrossRef Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer’s disease: challenges and perspectives. Mol Neurodegener. 2021;16(1):76.PubMedPubMedCentralCrossRef
41.
go back to reference Cao J, Huang M, Guo L, Zhu L, Hou J, Zhang L, et al. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis. Mol Psychiatry. 2021;26(9):4687–701.PubMedCrossRef Cao J, Huang M, Guo L, Zhu L, Hou J, Zhang L, et al. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis. Mol Psychiatry. 2021;26(9):4687–701.PubMedCrossRef
42.
go back to reference Delay C, Hébert SS. MicroRNAs and Alzheimer’s disease mouse models: current insights and future research avenues. Int J Alzheimer’s Dis. 2011;2011:1–6.CrossRef Delay C, Hébert SS. MicroRNAs and Alzheimer’s disease mouse models: current insights and future research avenues. Int J Alzheimer’s Dis. 2011;2011:1–6.CrossRef
44.
go back to reference Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM, Preiss T, et al. Neuronal MicroRNA deregulation in response to Alzheimer’s disease amyloid-β. PLoS ONE. 2010;5(6):e11070.PubMedPubMedCentralCrossRef Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM, Preiss T, et al. Neuronal MicroRNA deregulation in response to Alzheimer’s disease amyloid-β. PLoS ONE. 2010;5(6):e11070.PubMedPubMedCentralCrossRef
45.
go back to reference Guedes JR, Custódia CM, Silva RJ, de Almeida LP, Pedroso de Lima MC, Cardoso AL. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum Mol Genet. 2014;23(23):6286–301.PubMedCrossRef Guedes JR, Custódia CM, Silva RJ, de Almeida LP, Pedroso de Lima MC, Cardoso AL. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum Mol Genet. 2014;23(23):6286–301.PubMedCrossRef
46.
go back to reference Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice: role of miR-155 in ALS. Ann Neurol. 2015;77(1):75–99.PubMedCrossRef Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, et al. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice: role of miR-155 in ALS. Ann Neurol. 2015;77(1):75–99.PubMedCrossRef
47.
go back to reference Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity. 2002;17(5):583–91.PubMedCrossRef Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity. 2002;17(5):583–91.PubMedCrossRef
48.
go back to reference Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, et al. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun. 2017;8(1):851.PubMedPubMedCentralCrossRef Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, et al. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun. 2017;8(1):851.PubMedPubMedCentralCrossRef
49.
go back to reference Alexandrov PN, Percy ME, Lukiw WJ. Chromosome 21-encoded microRNAs (mRNAs): impact on Down’s syndrome and trisomy-21 linked disease. Cell Mol Neurobiol. 2018;38(3):769–74.PubMedCrossRef Alexandrov PN, Percy ME, Lukiw WJ. Chromosome 21-encoded microRNAs (mRNAs): impact on Down’s syndrome and trisomy-21 linked disease. Cell Mol Neurobiol. 2018;38(3):769–74.PubMedCrossRef
50.
go back to reference Zhao Y, Jaber V, Percy ME, Lukiw WJ. A microRNA cluster (let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802) encoded at chr21q21.1-chr21q21.3 and the phenotypic diversity of Down’s syndrome (DS; trisomy 21). 2017;11. Zhao Y, Jaber V, Percy ME, Lukiw WJ. A microRNA cluster (let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802) encoded at chr21q21.1-chr21q21.3 and the phenotypic diversity of Down’s syndrome (DS; trisomy 21). 2017;11.
51.
go back to reference Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W, van Ijcken WFJ, et al. Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep. 2018;24(5):1203-1217.e6.PubMedCrossRef Oosterhof N, Kuil LE, van der Linde HC, Burm SM, Berdowski W, van Ijcken WFJ, et al. Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep. 2018;24(5):1203-1217.e6.PubMedCrossRef
52.
go back to reference Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C, Obermüller U, et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci. 2017;20(10):1371–6.PubMedCrossRef Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C, Obermüller U, et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci. 2017;20(10):1371–6.PubMedCrossRef
53.
go back to reference Zhang X, Pearsall VM, Carver CM, Atkinson EJ, Clarkson BDS, Grund EM, et al. Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nat Commun. 2022;13(1):5671.PubMedPubMedCentralCrossRef Zhang X, Pearsall VM, Carver CM, Atkinson EJ, Clarkson BDS, Grund EM, et al. Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nat Commun. 2022;13(1):5671.PubMedPubMedCentralCrossRef
54.
go back to reference Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid ␤-protein via a scavenger receptor. 13. Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid ␤-protein via a scavenger receptor. 13.
55.
go back to reference Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E, et al. Fibrillar ␤-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS In Vivo. 13. Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E, et al. Fibrillar ␤-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS In Vivo. 13.
56.
go back to reference Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, et al. Transcriptional signature in microglia associated with Aβ plaque phagocytosis. Nat Commun. 2021;12(1):3015.PubMedPubMedCentralCrossRef Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, et al. Transcriptional signature in microglia associated with Aβ plaque phagocytosis. Nat Commun. 2021;12(1):3015.PubMedPubMedCentralCrossRef
57.
go back to reference El Hajj H, Savage JC, Bisht K, Parent M, Vallières L, Rivest S, et al. Ultrastructural evidence of microglial heterogeneity in Alzheimer’s disease amyloid pathology. J Neuroinflammation. 2019;16(1):87.PubMedPubMedCentralCrossRef El Hajj H, Savage JC, Bisht K, Parent M, Vallières L, Rivest S, et al. Ultrastructural evidence of microglial heterogeneity in Alzheimer’s disease amyloid pathology. J Neuroinflammation. 2019;16(1):87.PubMedPubMedCentralCrossRef
58.
go back to reference Korotkov A, Broekaart DWM, van Scheppingen J, Anink JJ, Baayen JC, Idema S, et al. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflammation. 2018;15(1):211.PubMedPubMedCentralCrossRef Korotkov A, Broekaart DWM, van Scheppingen J, Anink JJ, Baayen JC, Idema S, et al. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflammation. 2018;15(1):211.PubMedPubMedCentralCrossRef
59.
go back to reference Huang LG, Zou J, Lu QC. Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3. Brain Res. 2018;1689:109–22.PubMedCrossRef Huang LG, Zou J, Lu QC. Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3. Brain Res. 2018;1689:109–22.PubMedCrossRef
60.
go back to reference Fu H, Cheng Y, Luo H, Rong Z, Li Y, Lu P, et al. Silencing MicroRNA-155 attenuates kainic acid-induced seizure by inhibiting microglia activation. NeuroImmunoModulation. 2019;26(2):67–76.PubMedCrossRef Fu H, Cheng Y, Luo H, Rong Z, Li Y, Lu P, et al. Silencing MicroRNA-155 attenuates kainic acid-induced seizure by inhibiting microglia activation. NeuroImmunoModulation. 2019;26(2):67–76.PubMedCrossRef
62.
go back to reference Zhou X, Chen J, Tao H, Cai Y, Huang L, Zhou H, et al. Intranasal delivery of miR-155-5p antagomir alleviates acute seizures likely by inhibiting hippocampal inflammation. Neuropsychiatr Dis Treat. 2020;16:1295–307.PubMedPubMedCentralCrossRef Zhou X, Chen J, Tao H, Cai Y, Huang L, Zhou H, et al. Intranasal delivery of miR-155-5p antagomir alleviates acute seizures likely by inhibiting hippocampal inflammation. Neuropsychiatr Dis Treat. 2020;16:1295–307.PubMedPubMedCentralCrossRef
63.
go back to reference Mendez M, Lim G. Seizures in elderly patients with dementia: epidemiology and management. Drugs Aging. 2003;20(11):791–803.PubMedCrossRef Mendez M, Lim G. Seizures in elderly patients with dementia: epidemiology and management. Drugs Aging. 2003;20(11):791–803.PubMedCrossRef
64.
go back to reference Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16(4):311–22.PubMedPubMedCentralCrossRef Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL. Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol. 2017;16(4):311–22.PubMedPubMedCentralCrossRef
65.
go back to reference Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia. 2006;47(5):867–72.PubMedCrossRef Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia. 2006;47(5):867–72.PubMedCrossRef
66.
go back to reference Reyes-Marin KE, Nuñez A. Seizure susceptibility in the APP/PS1 mouse model of Alzheimer’s disease and relationship with amyloid β plaques. Brain Res. 2017;1677:93–100.PubMedCrossRef Reyes-Marin KE, Nuñez A. Seizure susceptibility in the APP/PS1 mouse model of Alzheimer’s disease and relationship with amyloid β plaques. Brain Res. 2017;1677:93–100.PubMedCrossRef
67.
go back to reference Siwek ME, Müller R, Henseler C, Trog A, Lundt A, Wormuth C, et al. Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer’s disease. Neural Plast. 2015;2015:1–17.CrossRef Siwek ME, Müller R, Henseler C, Trog A, Lundt A, Wormuth C, et al. Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer’s disease. Neural Plast. 2015;2015:1–17.CrossRef
68.
go back to reference Rosales Jubal E, Schwalm M, dos Santos GM, Schuck F, Reinhardt S, Tose A, et al. Acitretin reverses early functional network degradation in a mouse model of familial Alzheimer’s disease. Sci Rep. 2021;11(1):6649.PubMedPubMedCentralCrossRef Rosales Jubal E, Schwalm M, dos Santos GM, Schuck F, Reinhardt S, Tose A, et al. Acitretin reverses early functional network degradation in a mouse model of familial Alzheimer’s disease. Sci Rep. 2021;11(1):6649.PubMedPubMedCentralCrossRef
69.
go back to reference Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586(7829):417–23.PubMedPubMedCentralCrossRef Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586(7829):417–23.PubMedPubMedCentralCrossRef
70.
go back to reference Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu LJ. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci. 2014;34(32):10528–40.PubMedPubMedCentralCrossRef Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu LJ. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci. 2014;34(32):10528–40.PubMedPubMedCentralCrossRef
71.
go back to reference Tzeng TC, Hasegawa Y, Iguchi R, Cheung A, Caffrey DR, Thatcher EJ, et al. Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proc Natl Acad Sci. 2018;115(36):9002–7.PubMedPubMedCentralCrossRef Tzeng TC, Hasegawa Y, Iguchi R, Cheung A, Caffrey DR, Thatcher EJ, et al. Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proc Natl Acad Sci. 2018;115(36):9002–7.PubMedPubMedCentralCrossRef
72.
go back to reference Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age- related macular degeneration (AMD). Int J Biochem Mol Biol. 2012;3(1):105–16.PubMedPubMedCentral Lukiw WJ, Surjyadipta B, Dua P, Alexandrov PN. Common micro RNAs (miRNAs) target complement factor H (CFH) regulation in Alzheimer’s disease (AD) and in age- related macular degeneration (AMD). Int J Biochem Mol Biol. 2012;3(1):105–16.PubMedPubMedCentral
73.
go back to reference Ding J, Li X, Tian H, Wang L, Guo B, Wang Y, et al. SCN1A mutation—beyond Dravet syndrome: a systematic review and narrative synthesis. Front Neurol. 2021;24(12):743726.CrossRef Ding J, Li X, Tian H, Wang L, Guo B, Wang Y, et al. SCN1A mutation—beyond Dravet syndrome: a systematic review and narrative synthesis. Front Neurol. 2021;24(12):743726.CrossRef
Metadata
Title
Microglia specific deletion of miR-155 in Alzheimer’s disease mouse models reduces amyloid-β pathology but causes hyperexcitability and seizures
Authors
Macarena S. Aloi
Katherine E. Prater
Raymond E. A. Sánchez
Asad Beck
Jasmine L. Pathan
Stephanie Davidson
Angela Wilson
C. Dirk Keene
Horacio de la Iglesia
Suman Jayadev
Gwenn A. Garden
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02745-6

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue