Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 13/2022

Open Access 19-07-2022 | Alzheimer's Disease | Original Article

X-ray multiscale 3D neuroimaging to quantify cellular aging and neurodegeneration postmortem in a model of Alzheimer’s disease

Authors: Giacomo E. Barbone, Alberto Bravin, Alberto Mittone, Alexandra Pacureanu, Giada Mascio, Paola Di Pietro, Markus J. Kraiger, Marina Eckermann, Mariele Romano, Martin Hrabě de Angelis, Peter Cloetens, Valeria Bruno, Giuseppe Battaglia, Paola Coan

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 13/2022

Login to get access

Abstract

Purpose

Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease.

Methods

We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer’s disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration.

Results

In 3xTgAD mice, the observed hyperdensity was identified as amyloid-β and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy.

Conclusions

This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer’s disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.
Appendix
Available only for authorised users
Literature
2.
go back to reference Selkoe DJ. Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 2011;17 Selkoe DJ. Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 2011;17
3.
go back to reference Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82:637–72.PubMedCrossRef Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82:637–72.PubMedCrossRef
4.
go back to reference Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.PubMedCrossRef Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.PubMedCrossRef
5.
go back to reference Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010;6:78–87.PubMedCrossRef Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010;6:78–87.PubMedCrossRef
6.
go back to reference Fitzgerald R. Phase-sensitive X-ray imaging. Phys. Today 2000;7 Fitzgerald R. Phase-sensitive X-ray imaging. Phys. Today 2000;7
7.
go back to reference Beltran MA, et al. Interface-specific x-ray phase retrieval tomography of complex biological organs. Phys Med Biol. 2011;56:7353–69.PubMedCrossRef Beltran MA, et al. Interface-specific x-ray phase retrieval tomography of complex biological organs. Phys Med Biol. 2011;56:7353–69.PubMedCrossRef
8.
go back to reference Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol. 2013;58:R1–35.PubMedCrossRef Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol. 2013;58:R1–35.PubMedCrossRef
9.
go back to reference Cloetens P, Barrett R, Baruchel J, Guigay J-P, Schlenker M. Phase objects in synchrotron radiation hard x-ray imaging. J Phys D Appl Phys. 1996;29:133–46.CrossRef Cloetens P, Barrett R, Baruchel J, Guigay J-P, Schlenker M. Phase objects in synchrotron radiation hard x-ray imaging. J Phys D Appl Phys. 1996;29:133–46.CrossRef
10.
go back to reference Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum. 1995;66:5486–92.CrossRef Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum. 1995;66:5486–92.CrossRef
11.
go back to reference Pfeiffer F, et al. High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography. Phys Med Biol. 2007;52:6923–30.PubMedCrossRef Pfeiffer F, et al. High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography. Phys Med Biol. 2007;52:6923–30.PubMedCrossRef
12.
go back to reference Barbone GE, et al. Micro-imaging of brain cancer radiation therapy using phase-contrast computed tomography. Int J Radiat Oncol Biol Phys. 2018;101:965–84.PubMedCrossRef Barbone GE, et al. Micro-imaging of brain cancer radiation therapy using phase-contrast computed tomography. Int J Radiat Oncol Biol Phys. 2018;101:965–84.PubMedCrossRef
13.
go back to reference Khimchenko A, et al. Hard X-ray nanoholotomography: large-scale, label-free, 3D neuroimaging beyond optical limit. Adv Sci. 2018;5:1700694.CrossRef Khimchenko A, et al. Hard X-ray nanoholotomography: large-scale, label-free, 3D neuroimaging beyond optical limit. Adv Sci. 2018;5:1700694.CrossRef
14.
go back to reference Mittone A, et al. Characterization of a sCMOS-based high-resolution imaging system. J Synchrotron Radiat. 2017;24:1226–36.PubMedCrossRef Mittone A, et al. Characterization of a sCMOS-based high-resolution imaging system. J Synchrotron Radiat. 2017;24:1226–36.PubMedCrossRef
16.
go back to reference Mokso R, Cloetens P, Maire E, Ludwig W, Buffiere J-Y. Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics. Appl Phys Lett. 2007;90:144104.CrossRef Mokso R, Cloetens P, Maire E, Ludwig W, Buffiere J-Y. Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics. Appl Phys Lett. 2007;90:144104.CrossRef
17.
go back to reference Da Silva JC, et al. Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution. Optica. 2017;4:492–5.CrossRef Da Silva JC, et al. Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution. Optica. 2017;4:492–5.CrossRef
18.
go back to reference Cedola A, et al. X-ray phase contrast tomography reveals early vascular alterations and neuronal loss in a multiple sclerosis model. Sci Rep. 2017;7:5890.PubMedPubMedCentralCrossRef Cedola A, et al. X-ray phase contrast tomography reveals early vascular alterations and neuronal loss in a multiple sclerosis model. Sci Rep. 2017;7:5890.PubMedPubMedCentralCrossRef
19.
go back to reference Lathuilière A, et al. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Brain. 2016;139:1587–604.PubMedCrossRef Lathuilière A, et al. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Brain. 2016;139:1587–604.PubMedCrossRef
20.
go back to reference Töpperwien M, van der Meer F, Stadelmann C, Salditt T. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography. Proc Natl Acad Sci. 2018;115:6940 LP – 6945.CrossRef Töpperwien M, van der Meer F, Stadelmann C, Salditt T. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography. Proc Natl Acad Sci. 2018;115:6940 LP – 6945.CrossRef
21.
go back to reference Töpperwien M. et al. Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography. Sci Rep 2017;7 Töpperwien M. et al. Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography. Sci Rep 2017;7
22.
go back to reference Dyer EL. et al. Quantifying mesoscale neuroanatomy using X-ray microtomography. eNeuro 2017;4(5) Dyer EL. et al. Quantifying mesoscale neuroanatomy using X-ray microtomography. eNeuro 2017;4(5)
23.
go back to reference Noda-Saita K, et al. Quantitative analysis of amyloid plaques in a mouse model of Alzheimer’s disease by phase-contrast X-ray computed tomography. Neuroscience. 2006;138:1205–13.PubMedCrossRef Noda-Saita K, et al. Quantitative analysis of amyloid plaques in a mouse model of Alzheimer’s disease by phase-contrast X-ray computed tomography. Neuroscience. 2006;138:1205–13.PubMedCrossRef
24.
go back to reference Connor DM, et al. Computed tomography of amyloid plaques in a mouse model of Alzheimer’s disease using diffraction enhanced imaging. Neuroimage. 2009;46:908–14.PubMedCrossRef Connor DM, et al. Computed tomography of amyloid plaques in a mouse model of Alzheimer’s disease using diffraction enhanced imaging. Neuroimage. 2009;46:908–14.PubMedCrossRef
25.
go back to reference Pinzer BR, et al. Imaging brain amyloid deposition using grating-based differential phase contrast tomography. Neuroimage. 2012;61:1336–46.PubMedCrossRef Pinzer BR, et al. Imaging brain amyloid deposition using grating-based differential phase contrast tomography. Neuroimage. 2012;61:1336–46.PubMedCrossRef
26.
go back to reference Astolfo A, Lathuiliere A, Laversenne V, Schneider B, Stampanoni M. Amyloid-beta plaque deposition measured using propagation-based X-ray phase contrast CT imaging. J Synchrotron Radiat. 2016;23:813–9.PubMedPubMedCentralCrossRef Astolfo A, Lathuiliere A, Laversenne V, Schneider B, Stampanoni M. Amyloid-beta plaque deposition measured using propagation-based X-ray phase contrast CT imaging. J Synchrotron Radiat. 2016;23:813–9.PubMedPubMedCentralCrossRef
27.
go back to reference Massimi L, et al. Exploring Alzheimer’s disease mouse brain through X-ray phase contrast tomography: From the cell to the organ. Neuroimage. 2019;184:490–5.PubMedCrossRef Massimi L, et al. Exploring Alzheimer’s disease mouse brain through X-ray phase contrast tomography: From the cell to the organ. Neuroimage. 2019;184:490–5.PubMedCrossRef
28.
go back to reference Okamura N, et al. Advances in the development of tau PET radiotracers and their clinical applications. Aging Res Rev. 2016;30:107–13.CrossRef Okamura N, et al. Advances in the development of tau PET radiotracers and their clinical applications. Aging Res Rev. 2016;30:107–13.CrossRef
29.
go back to reference Töpperwien M, van der Meer F, Stadelmann C, Salditt T. Correlative x-ray phase-contrast tomography and histology of human brain tissue affected by Alzheimer’s disease. Neuroimage. 2020;210:116523.PubMedCrossRef Töpperwien M, van der Meer F, Stadelmann C, Salditt T. Correlative x-ray phase-contrast tomography and histology of human brain tissue affected by Alzheimer’s disease. Neuroimage. 2020;210:116523.PubMedCrossRef
30.
go back to reference Oddo S, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles : intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.PubMedCrossRef Oddo S, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles : intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.PubMedCrossRef
31.
go back to reference Oddo S, Caccamo A, Kitazawa M, Tseng BP, Laferla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging. 2003;24:1063–70.PubMedCrossRef Oddo S, Caccamo A, Kitazawa M, Tseng BP, Laferla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging. 2003;24:1063–70.PubMedCrossRef
32.
go back to reference Nicoletti F, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–41.PubMedCrossRef Nicoletti F, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–41.PubMedCrossRef
33.
go back to reference Bruno V, et al. The impact of metabotropic glutamate receptors into active neurodegenerative processes: a “dark side” in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology. 2017;115:180–92.PubMedCrossRef Bruno V, et al. The impact of metabotropic glutamate receptors into active neurodegenerative processes: a “dark side” in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology. 2017;115:180–92.PubMedCrossRef
34.
go back to reference Aronica E, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci. 2003;17:2106–18.PubMedCrossRef Aronica E, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci. 2003;17:2106–18.PubMedCrossRef
35.
go back to reference Bruno V, et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab. 2001;21:1013–33.PubMedCrossRef Bruno V, et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab. 2001;21:1013–33.PubMedCrossRef
36.
go back to reference Stampanoni M, et al. TOMCAT: a beamline for tomographic microscopy and coherent radiology experiments. AIP Conf Proc. 2007;879:848–51.CrossRef Stampanoni M, et al. TOMCAT: a beamline for tomographic microscopy and coherent radiology experiments. AIP Conf Proc. 2007;879:848–51.CrossRef
37.
go back to reference Pacureanu A, da Silva JC, Yang Y, Bohic S, Cloetens P. Nanoscale three-dimensional imaging of biological tissue with x-ray holographic tomography. in Proceedings of the SPIE 2018;10711, 107112B Pacureanu A, da Silva JC, Yang Y, Bohic S, Cloetens P. Nanoscale three-dimensional imaging of biological tissue with x-ray holographic tomography. in Proceedings of the SPIE 2018;10711, 107112B
38.
go back to reference Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc. 2002;206:33–40.PubMedCrossRef Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc. 2002;206:33–40.PubMedCrossRef
39.
go back to reference Bartels M, Krenkel M, Cloetens P, Möbius W, Salditt T. Myelinated mouse nerves studied by X-ray phase contrast zoom tomography. J Struct Biol. 2015;192:561–8.PubMedCrossRef Bartels M, Krenkel M, Cloetens P, Möbius W, Salditt T. Myelinated mouse nerves studied by X-ray phase contrast zoom tomography. J Struct Biol. 2015;192:561–8.PubMedCrossRef
40.
go back to reference Cloetens P, et al. Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett. 1999;75:2912–4.CrossRef Cloetens P, et al. Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett. 1999;75:2912–4.CrossRef
41.
go back to reference Zabler S, Cloetens P, Guigay J-P, Baruchel J, Schlenker M. Optimization of phase contrast imaging using hard x rays. Rev Sci Instrum. 2005;76:73705.CrossRef Zabler S, Cloetens P, Guigay J-P, Baruchel J, Schlenker M. Optimization of phase contrast imaging using hard x rays. Rev Sci Instrum. 2005;76:73705.CrossRef
42.
go back to reference Lyckegaard A, Johnson G, Tafforeau P. Correction of ring artifacts in X-ray tomographic images. Int J Tomogr Stat. 2011;18:1–9. Lyckegaard A, Johnson G, Tafforeau P. Correction of ring artifacts in X-ray tomographic images. Int J Tomogr Stat. 2011;18:1–9.
44.
go back to reference Kapur JN, Sahoo PK, Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph Image Process. 1985;29:273–85.CrossRef Kapur JN, Sahoo PK, Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph Image Process. 1985;29:273–85.CrossRef
45.
go back to reference Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.PubMedCrossRef Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.PubMedCrossRef
46.
go back to reference Sanchez-Cano C, et al. Synchrotron X-ray fluorescence nanoprobe reveals target sites for organo-osmium complex in human ovarian cancer cells. Chemistry. 2017;23:2512–6.PubMedPubMedCentralCrossRef Sanchez-Cano C, et al. Synchrotron X-ray fluorescence nanoprobe reveals target sites for organo-osmium complex in human ovarian cancer cells. Chemistry. 2017;23:2512–6.PubMedPubMedCentralCrossRef
47.
go back to reference De Samber B, et al. Nanoscopic X-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich’s ataxia fibroblasts. PLoS ONE. 2018;13:e0190495.PubMedPubMedCentralCrossRef De Samber B, et al. Nanoscopic X-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich’s ataxia fibroblasts. PLoS ONE. 2018;13:e0190495.PubMedPubMedCentralCrossRef
48.
go back to reference Solé VA, Papillon E, Cotte M, Walter P, Susini J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B At Spectrosc. 2007;62:63–8.CrossRef Solé VA, Papillon E, Cotte M, Walter P, Susini J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B At Spectrosc. 2007;62:63–8.CrossRef
49.
go back to reference Ullmann JFP, et al. Segmentation of the C57BL/6J mouse cerebellum in magnetic resonance images. Neuroimage. 2012;62:1408–14.PubMedCrossRef Ullmann JFP, et al. Segmentation of the C57BL/6J mouse cerebellum in magnetic resonance images. Neuroimage. 2012;62:1408–14.PubMedCrossRef
50.
go back to reference Vallet PG, et al. A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer’s disease. Acta Neuropathol. 1992;83:170–8.PubMedCrossRef Vallet PG, et al. A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer’s disease. Acta Neuropathol. 1992;83:170–8.PubMedCrossRef
52.
go back to reference Rauch JN, Olson SH, Gestwicki JE. Interactions between microtubule-associated protein tau (MAPT) and small molecules. Cold Spring Harb Perspect Med. 2017;7:a024034.PubMedPubMedCentralCrossRef Rauch JN, Olson SH, Gestwicki JE. Interactions between microtubule-associated protein tau (MAPT) and small molecules. Cold Spring Harb Perspect Med. 2017;7:a024034.PubMedPubMedCentralCrossRef
53.
go back to reference Cammalleri M, Bagnoli P, Bigiani A. Molecular and cellular mechanisms underlying somatostatin-based signaling in two model neural networks, the retina and the hippocampus. Int J Mol Sci. 2019;20:2506.PubMedCentralCrossRef Cammalleri M, Bagnoli P, Bigiani A. Molecular and cellular mechanisms underlying somatostatin-based signaling in two model neural networks, the retina and the hippocampus. Int J Mol Sci. 2019;20:2506.PubMedCentralCrossRef
54.
go back to reference Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol Mech Dis. 2008;3:41–66.CrossRef Yankner BA, Lu T, Loerch P. The aging brain. Annu Rev Pathol Mech Dis. 2008;3:41–66.CrossRef
55.
go back to reference Landfield PW, Baskin RK, Pitler TA. Brain aging correlates: retardation by hormonal-pharmacological treatments. Science. 1981;214(80):581–4.PubMedCrossRef Landfield PW, Baskin RK, Pitler TA. Brain aging correlates: retardation by hormonal-pharmacological treatments. Science. 1981;214(80):581–4.PubMedCrossRef
56.
go back to reference Landfield PW, Braun LD, Pitler TA, Lindsey JD, Lynch G. Hippocampal aging in rats: a morphometric study of multiple variables in semithin sections. Neurobiol Aging. 1981;2:265–75.PubMedCrossRef Landfield PW, Braun LD, Pitler TA, Lindsey JD, Lynch G. Hippocampal aging in rats: a morphometric study of multiple variables in semithin sections. Neurobiol Aging. 1981;2:265–75.PubMedCrossRef
57.
go back to reference Gramaccioni C, et al. Cryo-nanoimaging of single human macrophage cells: 3D structural and chemical quantification. Anal Chem. 2020;92:4814–9.PubMedCrossRef Gramaccioni C, et al. Cryo-nanoimaging of single human macrophage cells: 3D structural and chemical quantification. Anal Chem. 2020;92:4814–9.PubMedCrossRef
58.
go back to reference Wróbel PM, et al. Feasibility study of elemental analysis of large population of formalin fixed paraffin embedded tissue samples – preliminary results. Spectrochim Acta Part B At Spectrosc. 2020;173:105971.CrossRef Wróbel PM, et al. Feasibility study of elemental analysis of large population of formalin fixed paraffin embedded tissue samples – preliminary results. Spectrochim Acta Part B At Spectrosc. 2020;173:105971.CrossRef
59.
go back to reference Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA. Histochemical distribution of non-haem iron in the human brain. Acta Anat (Basel). 1992;144:235–57.CrossRef Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA. Histochemical distribution of non-haem iron in the human brain. Acta Anat (Basel). 1992;144:235–57.CrossRef
60.
go back to reference Ortega R, Cloetens P, Devès G, Carmona A, Bohic S. Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PLoS ONE. 2007;2:e925–e925.PubMedPubMedCentralCrossRef Ortega R, Cloetens P, Devès G, Carmona A, Bohic S. Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PLoS ONE. 2007;2:e925–e925.PubMedPubMedCentralCrossRef
61.
go back to reference Meadowcroft MD, Connor JR, Smith MB, Yang QX. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. J Magn Reson Imaging. 2009;29:997–1007.PubMedPubMedCentralCrossRef Meadowcroft MD, Connor JR, Smith MB, Yang QX. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. J Magn Reson Imaging. 2009;29:997–1007.PubMedPubMedCentralCrossRef
62.
go back to reference Honda K, Casadeus G, Petersen RB, Perry G, Smith MA. Oxidative stress and redox-active iron in Alzheimer’s disease. Ann N Y Acad Sci. 2004;1012:179–82.PubMedCrossRef Honda K, Casadeus G, Petersen RB, Perry G, Smith MA. Oxidative stress and redox-active iron in Alzheimer’s disease. Ann N Y Acad Sci. 2004;1012:179–82.PubMedCrossRef
63.
go back to reference Honavar M, Lantos PL. Ultrastructural changes in the frontal cortex and hippocampus in the aging marmoset. Mech Aging Dev. 1987;41:161–75.PubMedCrossRef Honavar M, Lantos PL. Ultrastructural changes in the frontal cortex and hippocampus in the aging marmoset. Mech Aging Dev. 1987;41:161–75.PubMedCrossRef
64.
go back to reference Frost B, Bardai FH, Feany MB. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr Biol. 2016;26:129–36.PubMedCrossRef Frost B, Bardai FH, Feany MB. Lamin dysfunction mediates neurodegeneration in tauopathies. Curr Biol. 2016;26:129–36.PubMedCrossRef
65.
66.
go back to reference Caraci F, et al. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies β-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2. Mol Pharmacol. 2011;79:618 LP – 626.CrossRef Caraci F, et al. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies β-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2. Mol Pharmacol. 2011;79:618 LP – 626.CrossRef
67.
go back to reference Wei H, et al. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping. Neuroimage. 2016;137:107–15.PubMedCrossRef Wei H, et al. Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping. Neuroimage. 2016;137:107–15.PubMedCrossRef
68.
go back to reference Johnson GA, et al. High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage. 2007;37:82–9.PubMedCrossRef Johnson GA, et al. High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage. 2007;37:82–9.PubMedCrossRef
70.
go back to reference Sfera A, Bullock K, Price A, Inderias L, Osorio C. Ferrosenescence: the iron age of neurodegeneration? Mech Aging Dev. 2018;174:63–75.PubMedCrossRef Sfera A, Bullock K, Price A, Inderias L, Osorio C. Ferrosenescence: the iron age of neurodegeneration? Mech Aging Dev. 2018;174:63–75.PubMedCrossRef
71.
go back to reference Smith MA, Harris PLR, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci. 1997;94:9866 LP – 9868.CrossRef Smith MA, Harris PLR, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci. 1997;94:9866 LP – 9868.CrossRef
72.
go back to reference Nunomura A, et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci. 1999;19:1959 LP – 1964.CrossRef Nunomura A, et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci. 1999;19:1959 LP – 1964.CrossRef
73.
go back to reference Kuchibhotla KV, et al. Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron. 2008;59:214–25.PubMedPubMedCentralCrossRef Kuchibhotla KV, et al. Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron. 2008;59:214–25.PubMedPubMedCentralCrossRef
75.
go back to reference Loo DT, et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci. 1993;90:7951 LP – 7955.CrossRef Loo DT, et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci. 1993;90:7951 LP – 7955.CrossRef
76.
go back to reference Pinton P, Romagnoli A, Rizzuto R, Giorgi C. Ca2+ signaling, mitochondria and cell death. Curr Mol Med 2008;8 Pinton P, Romagnoli A, Rizzuto R, Giorgi C. Ca2+ signaling, mitochondria and cell death. Curr Mol Med 2008;8
77.
go back to reference Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int. 2000;37:163–70.PubMedCrossRef Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int. 2000;37:163–70.PubMedCrossRef
78.
go back to reference Yao H-H, et al. Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J Neurochem. 2005;92:948–61.PubMedCrossRef Yao H-H, et al. Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J Neurochem. 2005;92:948–61.PubMedCrossRef
79.
go back to reference Battaglia G, et al. Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2015;74:126–36.PubMedCrossRef Battaglia G, et al. Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2015;74:126–36.PubMedCrossRef
80.
go back to reference Pan C, et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods. 2016;13:859–67.PubMedCrossRef Pan C, et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods. 2016;13:859–67.PubMedCrossRef
81.
go back to reference Murakami TC, et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat Neurosci. 2018;21:625–37.PubMedCrossRef Murakami TC, et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat Neurosci. 2018;21:625–37.PubMedCrossRef
83.
84.
85.
go back to reference Bon P. et al. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat Methods 2018;15 Bon P. et al. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat Methods 2018;15
86.
go back to reference Masuda T, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92.PubMedCrossRef Masuda T, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92.PubMedCrossRef
87.
88.
go back to reference Lichtman JW, Denk W. The big and the small: challenges of imaging the brain’s circuits. Science. 2011;334(80):618 LP – 623.CrossRef Lichtman JW, Denk W. The big and the small: challenges of imaging the brain’s circuits. Science. 2011;334(80):618 LP – 623.CrossRef
89.
go back to reference Mikula S, Denk W. High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods. 2015;12:541.PubMedCrossRef Mikula S, Denk W. High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods. 2015;12:541.PubMedCrossRef
Metadata
Title
X-ray multiscale 3D neuroimaging to quantify cellular aging and neurodegeneration postmortem in a model of Alzheimer’s disease
Authors
Giacomo E. Barbone
Alberto Bravin
Alberto Mittone
Alexandra Pacureanu
Giada Mascio
Paola Di Pietro
Markus J. Kraiger
Marina Eckermann
Mariele Romano
Martin Hrabě de Angelis
Peter Cloetens
Valeria Bruno
Giuseppe Battaglia
Paola Coan
Publication date
19-07-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 13/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05896-5

Other articles of this Issue 13/2022

European Journal of Nuclear Medicine and Molecular Imaging 13/2022 Go to the issue