Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Review

TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: a specialized Tau perspective

Authors: Mahima Kapoor, Subashchandrabose Chinnathambi

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Microtubule-associated protein, Tau has been implicated in Alzheimer's disease for its detachment from microtubules and formation of insoluble intracellular aggregates within the neurons. Recent findings have suggested the expulsion of Tau seeds in the extracellular domain and their prion-like propagation between neurons. Transforming Growth Factor-β1 (TGF-β1) is a ubiquitously occurring cytokine reported to carry out immunomodulation and neuroprotection in the brain. TGF-β-mediated regulation occurs at the level of neuronal survival and differentiation, glial activation (astrocyte and microglia), amyloid production–distribution–clearance and neurofibrillary tangle formation, all of which contributes to Alzheimer's pathophysiology. Its role in the reorganization of cytoskeletal architecture and remodelling of extracellular matrix to facilitate cellular migration has been well-documented. Microglia are the resident immune sentinels of the brain responsible for surveying the local microenvironment, migrating towards the beacon of pertinent damage and phagocytosing the cellular debris or patho-protein deposits at the site of insult. Channelizing microglia to target extracellular Tau could be a good strategy to combat the prion-like transmission and seeding problem in Alzheimer's disease. The current review focuses on reaffirming the role of TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization and considers utilizing the approach of TGF-β-triggered microglia-mediated targeting of extracellular patho-protein, Tau, as a possible potential strategy to combat Alzheimer's disease.
Literature
1.
go back to reference Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.CrossRefPubMed Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.CrossRefPubMed
2.
go back to reference Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, et al. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest. 2006;116:3060–9.CrossRefPubMedPubMedCentral Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, et al. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest. 2006;116:3060–9.CrossRefPubMedPubMedCentral
3.
go back to reference Von Bernhardi R, Cornejo F, Parada G, Eugenin J. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci. 2015;9:426. Von Bernhardi R, Cornejo F, Parada G, Eugenin J. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci. 2015;9:426.
4.
go back to reference De Strooper B, Annaert W. Novel Research Horizons for Presenilins and γ-Secretases in Cell Biology and Disease. Annu Rev Cell Dev Biol. 2010;26:235–60.CrossRefPubMed De Strooper B, Annaert W. Novel Research Horizons for Presenilins and γ-Secretases in Cell Biology and Disease. Annu Rev Cell Dev Biol. 2010;26:235–60.CrossRefPubMed
6.
go back to reference Sonawane SK, Chinnathambi S. Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis. J Mol Neurosci. 2018;65:480–90.CrossRefPubMed Sonawane SK, Chinnathambi S. Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis. J Mol Neurosci. 2018;65:480–90.CrossRefPubMed
8.
go back to reference Medina M, Avila J. New perspectives on the role of tau in Alzheimer’s disease. Implications for therapy Biochem Pharmacol. 2014;88:540–7.CrossRefPubMed Medina M, Avila J. New perspectives on the role of tau in Alzheimer’s disease. Implications for therapy Biochem Pharmacol. 2014;88:540–7.CrossRefPubMed
9.
go back to reference Kayed R, Jackson GR. Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr Opin Immunol. 2009;21:359–63.CrossRefPubMed Kayed R, Jackson GR. Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr Opin Immunol. 2009;21:359–63.CrossRefPubMed
10.
go back to reference Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem. 2010;112:1353–67.CrossRefPubMed Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer’s disease. J Neurochem. 2010;112:1353–67.CrossRefPubMed
11.
go back to reference Mocanu M-M, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, et al. The potential for -structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in Inducible Mouse Models of Tauopathy. J Neurosci. 2008;28:737–48.CrossRefPubMedPubMedCentral Mocanu M-M, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, et al. The potential for -structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in Inducible Mouse Models of Tauopathy. J Neurosci. 2008;28:737–48.CrossRefPubMedPubMedCentral
12.
go back to reference SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309:476–81.CrossRefPubMedPubMedCentral SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309:476–81.CrossRefPubMedPubMedCentral
13.
go back to reference Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol. 2012;181:1426–35.CrossRefPubMedPubMedCentral Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol. 2012;181:1426–35.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Gutierrez A, Vitorica J. Toward a New Concept of Alzheimer’s Disease Models: A Perspective from Neuroinflammation. J Alzheimers Dis JAD. 2018;64:S329–38.CrossRefPubMed Gutierrez A, Vitorica J. Toward a New Concept of Alzheimer’s Disease Models: A Perspective from Neuroinflammation. J Alzheimers Dis JAD. 2018;64:S329–38.CrossRefPubMed
16.
17.
18.
go back to reference Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11:909–13.CrossRefPubMedPubMedCentral Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11:909–13.CrossRefPubMedPubMedCentral
20.
go back to reference Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, et al. What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun. 2017;5:99.CrossRefPubMedPubMedCentral Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, et al. What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun. 2017;5:99.CrossRefPubMedPubMedCentral
21.
go back to reference Li L, Shi R, Gu J, Tung YC, Zhou Y, Zhou D, et al. Alzheimer’s disease brain contains tau fractions with differential prion-like activities. Acta Neuropathol Commun. 2021;9:28.CrossRefPubMedPubMedCentral Li L, Shi R, Gu J, Tung YC, Zhou Y, Zhou D, et al. Alzheimer’s disease brain contains tau fractions with differential prion-like activities. Acta Neuropathol Commun. 2021;9:28.CrossRefPubMedPubMedCentral
22.
go back to reference Duyckaerts C, Clavaguera F, Potier M-C. The prion-like propagation hypothesis in Alzheimer’s and Parkinson’s disease. Curr Opin Neurol. 2019;32:266–71.CrossRefPubMed Duyckaerts C, Clavaguera F, Potier M-C. The prion-like propagation hypothesis in Alzheimer’s and Parkinson’s disease. Curr Opin Neurol. 2019;32:266–71.CrossRefPubMed
23.
go back to reference Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–9.CrossRefPubMed Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–9.CrossRefPubMed
24.
go back to reference Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol. 2020;46:522–45.CrossRefPubMedPubMedCentral Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol. 2020;46:522–45.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14:389–94.CrossRefPubMedPubMedCentral Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14:389–94.CrossRefPubMedPubMedCentral
27.
go back to reference Lee WS, Tan DC, Deng Y, van Hummel A, Ippati S, Stevens C, et al. Syntaxins 6 and 8 facilitate tau into secretory pathways. Biochem J. 2021;478:1471–84.CrossRefPubMed Lee WS, Tan DC, Deng Y, van Hummel A, Ippati S, Stevens C, et al. Syntaxins 6 and 8 facilitate tau into secretory pathways. Biochem J. 2021;478:1471–84.CrossRefPubMed
28.
go back to reference Pilliod J, Desjardins A, Pernègre C, Jamann H, Larochelle C, Fon EA, et al. Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J Biol Chem. 2020;295:17827–41.CrossRefPubMedPubMedCentral Pilliod J, Desjardins A, Pernègre C, Jamann H, Larochelle C, Fon EA, et al. Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J Biol Chem. 2020;295:17827–41.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Furman JL, Vaquer-Alicea J, White CL, Cairns NJ, Nelson PT, Diamond MI. Widespread tau seeding activity at early Braak stages. Acta Neuropathol (Berl). 2017;133:91–100.CrossRefPubMed Furman JL, Vaquer-Alicea J, White CL, Cairns NJ, Nelson PT, Diamond MI. Widespread tau seeding activity at early Braak stages. Acta Neuropathol (Berl). 2017;133:91–100.CrossRefPubMed
31.
go back to reference Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27:1592–9.CrossRefPubMed Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27:1592–9.CrossRefPubMed
32.
go back to reference Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun. 2015;6:8490.CrossRefPubMed Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun. 2015;6:8490.CrossRefPubMed
33.
go back to reference Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep. 2012;2:700.CrossRefPubMedPubMedCentral Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep. 2012;2:700.CrossRefPubMedPubMedCentral
34.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.CrossRefPubMedPubMedCentral Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.CrossRefPubMedPubMedCentral
35.
go back to reference Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018;12:488.CrossRefPubMedPubMedCentral Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018;12:488.CrossRefPubMedPubMedCentral
36.
go back to reference Das R, Chinnathambi S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer’s disease. Cell Mol Life Sci. 2019;76:3681–94.CrossRefPubMed Das R, Chinnathambi S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer’s disease. Cell Mol Life Sci. 2019;76:3681–94.CrossRefPubMed
37.
go back to reference Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol. 2016;53:1181–94.CrossRefPubMed Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol. 2016;53:1181–94.CrossRefPubMed
38.
go back to reference De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, Cimbro R, et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron. 2017;95:341-356.e6.CrossRefPubMedPubMedCentral De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, Cimbro R, et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron. 2017;95:341-356.e6.CrossRefPubMedPubMedCentral
39.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell. 2017;169:1276-1290.e17.CrossRefPubMed Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell. 2017;169:1276-1290.e17.CrossRefPubMed
40.
go back to reference Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11:6129.CrossRefPubMedPubMedCentral Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11:6129.CrossRefPubMedPubMedCentral
41.
go back to reference Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M, et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 2017;21:366–80.CrossRefPubMedPubMedCentral Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, Hemberg M, et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 2017;21:366–80.CrossRefPubMedPubMedCentral
42.
go back to reference Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, Gao T, et al. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener. 2018;13:24.CrossRefPubMedPubMedCentral Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, Gao T, et al. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener. 2018;13:24.CrossRefPubMedPubMedCentral
43.
go back to reference Gerrits E, Brouwer N, Kooistra SM, Woodbury ME, Vermeiren Y, Lambourne M, et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol (Berl). 2021;141:681–96.CrossRefPubMed Gerrits E, Brouwer N, Kooistra SM, Woodbury ME, Vermeiren Y, Lambourne M, et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol (Berl). 2021;141:681–96.CrossRefPubMed
45.
go back to reference Chen Y, Colonna M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J Exp Med. 2021;218:e20202717.CrossRefPubMedPubMedCentral Chen Y, Colonna M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J Exp Med. 2021;218:e20202717.CrossRefPubMedPubMedCentral
46.
go back to reference Sobue A, Komine O, Hara Y, Endo F, Mizoguchi H, Watanabe S, et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9:1.CrossRefPubMedPubMedCentral Sobue A, Komine O, Hara Y, Endo F, Mizoguchi H, Watanabe S, et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9:1.CrossRefPubMedPubMedCentral
47.
go back to reference Navarro V, Sanchez-Mejias E, Jimenez S, Muñoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer’s Disease: Activated. Dysfunctional or Degenerative Front Aging Neurosci. 2018;10:140.CrossRefPubMedPubMedCentral Navarro V, Sanchez-Mejias E, Jimenez S, Muñoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer’s Disease: Activated. Dysfunctional or Degenerative Front Aging Neurosci. 2018;10:140.CrossRefPubMedPubMedCentral
49.
go back to reference Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18:315–21.CrossRefPubMed Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18:315–21.CrossRefPubMed
50.
go back to reference Sheffield LG, Marquis JG, Berman NEJ. Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer’s disease. Neurosci Lett. 2000;285:165–8.CrossRefPubMed Sheffield LG, Marquis JG, Berman NEJ. Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer’s disease. Neurosci Lett. 2000;285:165–8.CrossRefPubMed
51.
52.
go back to reference Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–51.CrossRefPubMed
53.
go back to reference Sonawane SK, Dubey T, Balmik AA, Das R, Chinnathambi S. Chapter 3. Alzheimer’s Disease Pathology: A Tau Perspective. In: Govindaraju T, editor. Alzheimers Dis Cambridge: Royal Society of Chemistry; 2022 Sonawane SK, Dubey T, Balmik AA, Das R, Chinnathambi S. Chapter 3. Alzheimer’s Disease Pathology: A Tau Perspective. In: Govindaraju T, editor. Alzheimers Dis Cambridge: Royal Society of Chemistry; 2022
54.
go back to reference Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, et al. Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J Alzheimers Dis JAD. 2017;55:1083–99.CrossRefPubMed Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, et al. Tau oligomers associate with inflammation in the brain and retina of tauopathy mice and in neurodegenerative diseases. J Alzheimers Dis JAD. 2017;55:1083–99.CrossRefPubMed
55.
go back to reference Wang C, Fan L, Khawaja RR, Liu B, Zhan L, Kodama L, et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat Commun. 2022;13:1969.CrossRefPubMedPubMedCentral Wang C, Fan L, Khawaja RR, Liu B, Zhan L, Kodama L, et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat Commun. 2022;13:1969.CrossRefPubMedPubMedCentral
56.
go back to reference Bolós M, Llorens-Martín M, Perea JR, Jurado-Arjona J, Rábano A, Hernández F, et al. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener. 2017;12:59.CrossRefPubMedPubMedCentral Bolós M, Llorens-Martín M, Perea JR, Jurado-Arjona J, Rábano A, Hernández F, et al. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener. 2017;12:59.CrossRefPubMedPubMedCentral
57.
go back to reference Biber K, Neumann H, Inoue K, Boddeke HWGM. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci. 2007;30:596–602.CrossRefPubMed Biber K, Neumann H, Inoue K, Boddeke HWGM. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci. 2007;30:596–602.CrossRefPubMed
58.
go back to reference Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of Tau pathology by the microglial Fractalkine receptor. Neuron. 2010;68:19–31.CrossRefPubMedPubMedCentral Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of Tau pathology by the microglial Fractalkine receptor. Neuron. 2010;68:19–31.CrossRefPubMedPubMedCentral
59.
go back to reference Chidambaram H, Das R, Chinnathambi S. Interaction of Tau with the chemokine receptor, CX3CR1 and its effect on microglial activation, migration and proliferation. Cell Biosci. 2020;10:109.CrossRefPubMedPubMedCentral Chidambaram H, Das R, Chinnathambi S. Interaction of Tau with the chemokine receptor, CX3CR1 and its effect on microglial activation, migration and proliferation. Cell Biosci. 2020;10:109.CrossRefPubMedPubMedCentral
60.
go back to reference Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, et al. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflam. 2018;15:269.CrossRef Hopp SC, Lin Y, Oakley D, Roe AD, DeVos SL, Hanlon D, et al. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease. J Neuroinflam. 2018;15:269.CrossRef
61.
go back to reference Mondragón-Rodríguez S, Perry G, Zhu X, Moreira PI, Acevedo-Aquino MC, Williams S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013: 940603.CrossRefPubMedPubMedCentral Mondragón-Rodríguez S, Perry G, Zhu X, Moreira PI, Acevedo-Aquino MC, Williams S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013: 940603.CrossRefPubMedPubMedCentral
62.
go back to reference Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, et al. Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res. 2012;347:291–301.CrossRefPubMed Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, et al. Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res. 2012;347:291–301.CrossRefPubMed
64.
go back to reference Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRefPubMed Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRefPubMed
66.
67.
go back to reference Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7:612–8.CrossRefPubMed Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med. 2001;7:612–8.CrossRefPubMed
68.
go back to reference Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, et al. TGF-β1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther. 2009;17:237–49.CrossRefPubMedPubMedCentral Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, et al. TGF-β1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther. 2009;17:237–49.CrossRefPubMedPubMedCentral
69.
go back to reference Masliah E, Ho G, Wyss-Coray T. Functional role of TGF beta in Alzheimer’s disease microvascular injury: lessons from transgenic mice. Neurochem Int. 2001;39:393–400.CrossRefPubMed Masliah E, Ho G, Wyss-Coray T. Functional role of TGF beta in Alzheimer’s disease microvascular injury: lessons from transgenic mice. Neurochem Int. 2001;39:393–400.CrossRefPubMed
70.
go back to reference Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:1200–5.CrossRefPubMedPubMedCentral Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:1200–5.CrossRefPubMedPubMedCentral
71.
go back to reference Ueberham U, Ueberham E, Gruschka H, Arendt T. Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci. 2006;24:2327–34.CrossRefPubMed Ueberham U, Ueberham E, Gruschka H, Arendt T. Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci. 2006;24:2327–34.CrossRefPubMed
72.
go back to reference Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin. 2017;50:106–20.CrossRefPubMedCentral Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin. 2017;50:106–20.CrossRefPubMedCentral
73.
go back to reference Ueberham U, Hilbrich I, Ueberham E, Rohn S, Glöckner P, Dietrich K, et al. Transcriptional control of cell cycle-dependent kinase 4 by Smad proteins–implications for Alzheimer’s disease. Neurobiol Aging. 2012;33:2827–40.CrossRefPubMed Ueberham U, Hilbrich I, Ueberham E, Rohn S, Glöckner P, Dietrich K, et al. Transcriptional control of cell cycle-dependent kinase 4 by Smad proteins–implications for Alzheimer’s disease. Neurobiol Aging. 2012;33:2827–40.CrossRefPubMed
74.
go back to reference Luterman JD, Haroutunian V, Yemul S, Ho L, Purohit D, Aisen PS, et al. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol. 2000;57:1153.CrossRefPubMed Luterman JD, Haroutunian V, Yemul S, Ho L, Purohit D, Aisen PS, et al. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol. 2000;57:1153.CrossRefPubMed
75.
go back to reference Lee H, Ueda M, Zhu X, Perry G, Smith MA. Ectopic expression of phospho-Smad2 in Alzheimer’s disease: Uncoupling of the transforming growth factor-β pathway? J Neurosci Res. 2006;84:1856–61.CrossRefPubMed Lee H, Ueda M, Zhu X, Perry G, Smith MA. Ectopic expression of phospho-Smad2 in Alzheimer’s disease: Uncoupling of the transforming growth factor-β pathway? J Neurosci Res. 2006;84:1856–61.CrossRefPubMed
76.
go back to reference Cacquevel M, Lebeurrier N, Chéenne S, Vivien D. Cytokines in neuroinflammation and Alzheimer’s disease. Curr Drug Targets. 2004;5:529–34.CrossRefPubMed Cacquevel M, Lebeurrier N, Chéenne S, Vivien D. Cytokines in neuroinflammation and Alzheimer’s disease. Curr Drug Targets. 2004;5:529–34.CrossRefPubMed
77.
go back to reference Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, et al. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature. 1997;389:603–6.CrossRefPubMed Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, et al. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature. 1997;389:603–6.CrossRefPubMed
78.
go back to reference Kato T, Sekine Y, Nozaki H, Uemura M, Ando S, Hirokawa S, et al. Excessive production of transforming growth factor β1 causes mural cell depletion from cerebral small vessels. Front Aging Neurosci. 2020;12:151.CrossRefPubMedPubMedCentral Kato T, Sekine Y, Nozaki H, Uemura M, Ando S, Hirokawa S, et al. Excessive production of transforming growth factor β1 causes mural cell depletion from cerebral small vessels. Front Aging Neurosci. 2020;12:151.CrossRefPubMedPubMedCentral
79.
go back to reference Dickson MR, Perry RT, Wiener H, Go RCP. Association studies of transforming growth factor-beta 1 and Alzheimer’s disease. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2005;139B:38–41.CrossRef Dickson MR, Perry RT, Wiener H, Go RCP. Association studies of transforming growth factor-beta 1 and Alzheimer’s disease. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2005;139B:38–41.CrossRef
80.
go back to reference Bosco P, Ferri R, Salluzzo MG, Castellano S, Signorelli M, Nicoletti F, et al. Role of the transforming-growth-factor-β1 gene in late-onset Alzheimer’s disease: implications for the treatment. Curr Genomics. 2013;14:147–56.CrossRefPubMedPubMedCentral Bosco P, Ferri R, Salluzzo MG, Castellano S, Signorelli M, Nicoletti F, et al. Role of the transforming-growth-factor-β1 gene in late-onset Alzheimer’s disease: implications for the treatment. Curr Genomics. 2013;14:147–56.CrossRefPubMedPubMedCentral
81.
go back to reference Fessel J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer’s disease. Alzheimers Dement Transl Res Clin Interv. 2019;5:899–905.CrossRef Fessel J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer’s disease. Alzheimers Dement Transl Res Clin Interv. 2019;5:899–905.CrossRef
82.
go back to reference Fessel J. Prevention of Alzheimer’s disease by treating mild cognitive impairment with combinations chosen from eight available drugs. Alzheimers Dement N Y N. 2019;5:780–8.CrossRef Fessel J. Prevention of Alzheimer’s disease by treating mild cognitive impairment with combinations chosen from eight available drugs. Alzheimers Dement N Y N. 2019;5:780–8.CrossRef
83.
go back to reference Brionne TC, Tesseur I, Masliah E, Wyss-Coray T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron. 2003;40:1133–45.CrossRefPubMed Brionne TC, Tesseur I, Masliah E, Wyss-Coray T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron. 2003;40:1133–45.CrossRefPubMed
84.
go back to reference Attaai A, Neidert N, von Ehr A, Potru PS, Zöller T, Spittau B. Postnatal maturation of microglia is associated with alternative activation and activated TGFβ signaling. Glia. 2018;66:1695–708.CrossRefPubMed Attaai A, Neidert N, von Ehr A, Potru PS, Zöller T, Spittau B. Postnatal maturation of microglia is associated with alternative activation and activated TGFβ signaling. Glia. 2018;66:1695–708.CrossRefPubMed
86.
go back to reference Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.CrossRefPubMed Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.CrossRefPubMed
87.
go back to reference Neidert N, von Ehr A, Zöller T, Spittau B. Microglia-specific expression of Olfml3 Is directly regulated by transforming growth factor β1-induced Smad2 signaling. Front Immunol. 2018;9:1728.CrossRefPubMedPubMedCentral Neidert N, von Ehr A, Zöller T, Spittau B. Microglia-specific expression of Olfml3 Is directly regulated by transforming growth factor β1-induced Smad2 signaling. Front Immunol. 2018;9:1728.CrossRefPubMedPubMedCentral
88.
go back to reference Spittau B, Dokalis N, Prinz M. The role of TGFβ signaling in microglia maturation and activation. Trends Immunol. 2020;41:836–48.CrossRefPubMed Spittau B, Dokalis N, Prinz M. The role of TGFβ signaling in microglia maturation and activation. Trends Immunol. 2020;41:836–48.CrossRefPubMed
89.
go back to reference Kuroda E, Nishimura K, Kawanishi S, Sueyoshi M, Ueno F, Toji Y, et al. Mouse bone marrow-derived microglia-like cells secrete transforming growth factor-β1 and promote microglial Aβ phagocytosis and reduction of brain Aβ. Neuroscience. 2020;438:217–28.CrossRefPubMed Kuroda E, Nishimura K, Kawanishi S, Sueyoshi M, Ueno F, Toji Y, et al. Mouse bone marrow-derived microglia-like cells secrete transforming growth factor-β1 and promote microglial Aβ phagocytosis and reduction of brain Aβ. Neuroscience. 2020;438:217–28.CrossRefPubMed
90.
go back to reference Huang W-C, Yen F-C, Shie F-S, Pan C-M, Shiao Y-J, Yang C-N, et al. TGF-β1 blockade of microglial chemotaxis toward Aβ aggregates involves SMAD signaling and down-regulation of CCL5. J Neuroinflammation. 2010;7:28.CrossRefPubMedPubMedCentral Huang W-C, Yen F-C, Shie F-S, Pan C-M, Shiao Y-J, Yang C-N, et al. TGF-β1 blockade of microglial chemotaxis toward Aβ aggregates involves SMAD signaling and down-regulation of CCL5. J Neuroinflammation. 2010;7:28.CrossRefPubMedPubMedCentral
91.
go back to reference Mocali A, Cedrola S, DellaMalva N, Bontempelli M, Mitidieri VM, Bavazzano A, et al. Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol. 2004;39:1555–61.CrossRefPubMed Mocali A, Cedrola S, DellaMalva N, Bontempelli M, Mitidieri VM, Bavazzano A, et al. Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol. 2004;39:1555–61.CrossRefPubMed
92.
go back to reference Tichauer JE, Flores B, Soler B, Eugenín-von Bernhardi L, Ramírez G, von Bernhardi R. Age-dependent changes on TGFβ1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun. 2014;37:187–96.CrossRefPubMed Tichauer JE, Flores B, Soler B, Eugenín-von Bernhardi L, Ramírez G, von Bernhardi R. Age-dependent changes on TGFβ1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun. 2014;37:187–96.CrossRefPubMed
93.
go back to reference Floden AM, Combs CK. Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J Alzheimers Dis JAD. 2011;25:279–93.CrossRefPubMed Floden AM, Combs CK. Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J Alzheimers Dis JAD. 2011;25:279–93.CrossRefPubMed
94.
go back to reference Akakura S, Singh S, Spataro M, Akakura R, Kim J-I, Albert ML, et al. The opsonin MFG-E8 is a ligand for the αvβ5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res. 2004;292:403–16.CrossRefPubMed Akakura S, Singh S, Spataro M, Akakura R, Kim J-I, Albert ML, et al. The opsonin MFG-E8 is a ligand for the αvβ5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res. 2004;292:403–16.CrossRefPubMed
96.
go back to reference Lim H, Yang T, Lee W, Park S-G. TGF-β Increases MFGE8 production in myeloid-derived suppressor cells to promote B16F10 melanoma metastasis. Biomedicines. 2021;9:896.CrossRefPubMedPubMedCentral Lim H, Yang T, Lee W, Park S-G. TGF-β Increases MFGE8 production in myeloid-derived suppressor cells to promote B16F10 melanoma metastasis. Biomedicines. 2021;9:896.CrossRefPubMedPubMedCentral
97.
go back to reference Kim ES, Kim RS, Ren RF, Hawver DB, Flanders KC. Transforming growth factor-beta inhibits apoptosis induced by beta-amyloid peptide fragment 25–35 in cultured neuronal cells. Brain Res Mol Brain Res. 1998;62:122–30.CrossRefPubMed Kim ES, Kim RS, Ren RF, Hawver DB, Flanders KC. Transforming growth factor-beta inhibits apoptosis induced by beta-amyloid peptide fragment 25–35 in cultured neuronal cells. Brain Res Mol Brain Res. 1998;62:122–30.CrossRefPubMed
98.
go back to reference Prehn JH, Bindokas VP, Jordán J, Galindo MF, Ghadge GD, Roos RP, et al. Protective effect of transforming growth factor-beta 1 on beta-amyloid neurotoxicity in rat hippocampal neurons. Mol Pharmacol. 1996;49:319–28.PubMed Prehn JH, Bindokas VP, Jordán J, Galindo MF, Ghadge GD, Roos RP, et al. Protective effect of transforming growth factor-beta 1 on beta-amyloid neurotoxicity in rat hippocampal neurons. Mol Pharmacol. 1996;49:319–28.PubMed
99.
go back to reference Ren RF, Flanders KC. Transforming growth factors-beta protect primary rat hippocampal neuronal cultures from degeneration induced by beta-amyloid peptide. Brain Res. 1996;732:16–24.CrossRefPubMed Ren RF, Flanders KC. Transforming growth factors-beta protect primary rat hippocampal neuronal cultures from degeneration induced by beta-amyloid peptide. Brain Res. 1996;732:16–24.CrossRefPubMed
101.
go back to reference Yu P, Wang H, Katagiri Y, Geller HM. An in vitro model of reactive astrogliosis and its effect on neuronal growth. Methods Mol Biol Clifton NJ. 2012;814:327–40.CrossRef Yu P, Wang H, Katagiri Y, Geller HM. An in vitro model of reactive astrogliosis and its effect on neuronal growth. Methods Mol Biol Clifton NJ. 2012;814:327–40.CrossRef
102.
go back to reference Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.CrossRefPubMedPubMedCentral Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.CrossRefPubMedPubMedCentral
104.
go back to reference Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci Off J Soc Neurosci. 2012;32:6391–410.CrossRef Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci Off J Soc Neurosci. 2012;32:6391–410.CrossRef
105.
106.
go back to reference Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci. 2019;22:2087–97.CrossRefPubMed Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci. 2019;22:2087–97.CrossRefPubMed
107.
go back to reference Burton T, Liang B, Dibrov A, Amara F. Transforming growth factor-beta-induced transcription of the Alzheimer beta-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads. Biochem Biophys Res Commun. 2002;295:713–23.CrossRefPubMed Burton T, Liang B, Dibrov A, Amara F. Transforming growth factor-beta-induced transcription of the Alzheimer beta-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads. Biochem Biophys Res Commun. 2002;295:713–23.CrossRefPubMed
108.
go back to reference Gray CW, Patel AJ. Regulation of beta-amyloid precursor protein isoform mRNAs by transforming growth factor-beta 1 and interleukin-1 beta in astrocytes. Brain Res Mol Brain Res. 1993;19:251–6.CrossRefPubMed Gray CW, Patel AJ. Regulation of beta-amyloid precursor protein isoform mRNAs by transforming growth factor-beta 1 and interleukin-1 beta in astrocytes. Brain Res Mol Brain Res. 1993;19:251–6.CrossRefPubMed
109.
go back to reference Lesné S, Docagne F, Gabriel C, Liot G, Lahiri DK, Buée L, et al. Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J Biol Chem. 2003;278:18408–18.CrossRefPubMed Lesné S, Docagne F, Gabriel C, Liot G, Lahiri DK, Buée L, et al. Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J Biol Chem. 2003;278:18408–18.CrossRefPubMed
110.
go back to reference Vivien D, Ali C. Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev. 2006;17:121–8.CrossRefPubMed Vivien D, Ali C. Transforming growth factor-β signalling in brain disorders. Cytokine Growth Factor Rev. 2006;17:121–8.CrossRefPubMed
111.
go back to reference Zheng J-Y, Sun J, Ji C-M, Shen L, Chen Z-J, Xie P, et al. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol Aging. 2017;54:112–32.CrossRefPubMed Zheng J-Y, Sun J, Ji C-M, Shen L, Chen Z-J, Xie P, et al. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer’s disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling. Neurobiol Aging. 2017;54:112–32.CrossRefPubMed
112.
go back to reference Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E. Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am J Pathol. 2000;156:139–50.CrossRefPubMedPubMedCentral Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E. Chronic overproduction of transforming growth factor-beta1 by astrocytes promotes Alzheimer’s disease-like microvascular degeneration in transgenic mice. Am J Pathol. 2000;156:139–50.CrossRefPubMedPubMedCentral
113.
go back to reference Caraci F, Tascedda F, Merlo S, Benatti C, Spampinato SF, Munafò A, et al. Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Front Pharmacol. 2016;7:389.CrossRefPubMedPubMedCentral Caraci F, Tascedda F, Merlo S, Benatti C, Spampinato SF, Munafò A, et al. Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Front Pharmacol. 2016;7:389.CrossRefPubMedPubMedCentral
114.
go back to reference Pereira Diniz L, Tortelli V, Matias I, Morgado J, Bérgamo Araujo AP, Melo HM, et al. Astrocyte transforming growth factor beta 1 protects synapses against aβ oligomers in Alzheimer’s Disease Model. J Neurosci. 2017;37:6797–809.CrossRefPubMedCentral Pereira Diniz L, Tortelli V, Matias I, Morgado J, Bérgamo Araujo AP, Melo HM, et al. Astrocyte transforming growth factor beta 1 protects synapses against aβ oligomers in Alzheimer’s Disease Model. J Neurosci. 2017;37:6797–809.CrossRefPubMedCentral
115.
116.
go back to reference Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782:197–228.CrossRefPubMed Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782:197–228.CrossRefPubMed
117.
go back to reference Derynck R, Miyazono K. The TGF-ß [beta] family. Cold Spring Harbor: Cold Spring Harbor laboratory press; 2008. Derynck R, Miyazono K. The TGF-ß [beta] family. Cold Spring Harbor: Cold Spring Harbor laboratory press; 2008.
118.
go back to reference Edlund S, Landström M, Heldin C-H, Aspenström P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell. 2002;13:902–14.CrossRefPubMedPubMedCentral Edlund S, Landström M, Heldin C-H, Aspenström P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell. 2002;13:902–14.CrossRefPubMedPubMedCentral
119.
go back to reference Motizuki M, Saitoh M, Miyazawa K. Maid is a negative regulator of transforming growth factor-β-induced cell migration. J Biochem (Tokyo). 2015;158:435–44.CrossRefPubMed Motizuki M, Saitoh M, Miyazawa K. Maid is a negative regulator of transforming growth factor-β-induced cell migration. J Biochem (Tokyo). 2015;158:435–44.CrossRefPubMed
120.
122.
go back to reference Walsh JE, Young MRI. TGF-beta regulation of focal adhesion proteins and motility of premalignant oral lesions via protein phosphatase 1. Anticancer Res. 2011;31:3159–64.PubMedPubMedCentral Walsh JE, Young MRI. TGF-beta regulation of focal adhesion proteins and motility of premalignant oral lesions via protein phosphatase 1. Anticancer Res. 2011;31:3159–64.PubMedPubMedCentral
124.
go back to reference Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.CrossRefPubMed Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.CrossRefPubMed
125.
go back to reference de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004;15:1–11.CrossRefPubMed de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004;15:1–11.CrossRefPubMed
126.
go back to reference Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C. A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases. FEBS J. 2008;275:4074–87.CrossRefPubMed Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C. A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases. FEBS J. 2008;275:4074–87.CrossRefPubMed
127.
go back to reference Hubchak SC, Runyan CE, Kreisberg JI, Schnaper HW. Cytoskeletal rearrangement and signal transduction in TGF-beta1-stimulated mesangial cell collagen accumulation. J Am Soc Nephrol JASN. 2003;14:1969–80.CrossRefPubMed Hubchak SC, Runyan CE, Kreisberg JI, Schnaper HW. Cytoskeletal rearrangement and signal transduction in TGF-beta1-stimulated mesangial cell collagen accumulation. J Am Soc Nephrol JASN. 2003;14:1969–80.CrossRefPubMed
128.
go back to reference Nalluri SM, O’Connor JW, Gomez EW. Cytoskeletal signaling in TGFβ-induced epithelial–mesenchymal transition. Cytoskeleton. 2015;72:557–69.CrossRefPubMed Nalluri SM, O’Connor JW, Gomez EW. Cytoskeletal signaling in TGFβ-induced epithelial–mesenchymal transition. Cytoskeleton. 2015;72:557–69.CrossRefPubMed
129.
go back to reference Vardouli L, Moustakas A, Stournaras C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem. 2005;280:11448–57.CrossRefPubMed Vardouli L, Moustakas A, Stournaras C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem. 2005;280:11448–57.CrossRefPubMed
130.
go back to reference Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12:27–36.CrossRefPubMedPubMedCentral Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12:27–36.CrossRefPubMedPubMedCentral
131.
go back to reference Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F, Gómez A, et al. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012;2:809.CrossRefPubMedPubMedCentral Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F, Gómez A, et al. ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012;2:809.CrossRefPubMedPubMedCentral
132.
134.
go back to reference Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia N Y N. 2004;6:603–10.CrossRef Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia N Y N. 2004;6:603–10.CrossRef
135.
go back to reference Chellaiah MA, Biswas RS, Yuen D, Alvarez UM, Hruska KA. Phosphatidylinositol 3,4,5-trisphosphate directs association of Src Homology 2-containing signaling proteins with gelsolin. J Biol Chem. 2001;276:47434–44.CrossRefPubMed Chellaiah MA, Biswas RS, Yuen D, Alvarez UM, Hruska KA. Phosphatidylinositol 3,4,5-trisphosphate directs association of Src Homology 2-containing signaling proteins with gelsolin. J Biol Chem. 2001;276:47434–44.CrossRefPubMed
136.
go back to reference Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, et al. Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem. 2000;275:11993–2002.CrossRefPubMed Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, et al. Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem. 2000;275:11993–2002.CrossRefPubMed
137.
go back to reference Varon C, Tatin F, Moreau V, Obberghen-Schilling EV, Fernandez-Sauze S, Reuzeau E, et al. Transforming growth factor β induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol. 2006;26:3582.CrossRefPubMedPubMedCentral Varon C, Tatin F, Moreau V, Obberghen-Schilling EV, Fernandez-Sauze S, Reuzeau E, et al. Transforming growth factor β induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol. 2006;26:3582.CrossRefPubMedPubMedCentral
138.
go back to reference Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm Vienna Austria. 1996;2010(117):919–47. Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm Vienna Austria. 1996;2010(117):919–47.
139.
go back to reference Chen J-H, Ke K-F, Lu J-H, Qiu Y-H, Peng Y-P. Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer’s disease model rats. PLoS ONE. 2015;10: e0116549.CrossRefPubMedPubMedCentral Chen J-H, Ke K-F, Lu J-H, Qiu Y-H, Peng Y-P. Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer’s disease model rats. PLoS ONE. 2015;10: e0116549.CrossRefPubMedPubMedCentral
140.
go back to reference Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49:489–502.CrossRefPubMed Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49:489–502.CrossRefPubMed
141.
go back to reference Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18:998–1000. Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18:998–1000.
142.
go back to reference Kawanishi S, Takata K, Itezono S, Nagayama H, Konoya S, Chisaki Y, et al. Bone-Marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis JAD. 2018;64:563–85.CrossRefPubMed Kawanishi S, Takata K, Itezono S, Nagayama H, Konoya S, Chisaki Y, et al. Bone-Marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis JAD. 2018;64:563–85.CrossRefPubMed
143.
go back to reference Kuroda E, Takata K, Nishimura K, Oka H, Sueyoshi M, Aitani M, et al. Peripheral blood-derived microglia-like cells decrease amyloid-β burden and ameliorate cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis JAD. 2020;73:413–29.CrossRefPubMed Kuroda E, Takata K, Nishimura K, Oka H, Sueyoshi M, Aitani M, et al. Peripheral blood-derived microglia-like cells decrease amyloid-β burden and ameliorate cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimers Dis JAD. 2020;73:413–29.CrossRefPubMed
144.
go back to reference Avila J. The role of TGF-β1 in promoting microglial Aβ phagocytosis. Neuroscience. 2020;438:215–6.CrossRefPubMed Avila J. The role of TGF-β1 in promoting microglial Aβ phagocytosis. Neuroscience. 2020;438:215–6.CrossRefPubMed
145.
go back to reference Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM. A critical role of tropomyosins in TGF-β regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell. 2004;15:4682–94.CrossRefPubMedPubMedCentral Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM. A critical role of tropomyosins in TGF-β regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell. 2004;15:4682–94.CrossRefPubMedPubMedCentral
146.
go back to reference Morita T, Mayanagi T, Sobue K. Dual roles of myocardin-related transcription factors in epithelial–mesenchymal transition via slug induction and actin remodeling. J Cell Biol. 2007;179:1027–42.CrossRefPubMedPubMedCentral Morita T, Mayanagi T, Sobue K. Dual roles of myocardin-related transcription factors in epithelial–mesenchymal transition via slug induction and actin remodeling. J Cell Biol. 2007;179:1027–42.CrossRefPubMedPubMedCentral
147.
go back to reference O’Connor JW, Gomez EW. Cell adhesion and shape regulate TGF-Beta1-induced epithelial-myofibroblast transition via MRTF-A Signaling. PLoS ONE. 2013;8:e83188.CrossRefPubMedPubMedCentral O’Connor JW, Gomez EW. Cell adhesion and shape regulate TGF-Beta1-induced epithelial-myofibroblast transition via MRTF-A Signaling. PLoS ONE. 2013;8:e83188.CrossRefPubMedPubMedCentral
148.
go back to reference Masszi A, Di Ciano C, Sirokmány G, Arthur WT, Rotstein OD, Wang J, et al. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2003;284:F911-924.CrossRefPubMed Masszi A, Di Ciano C, Sirokmány G, Arthur WT, Rotstein OD, Wang J, et al. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2003;284:F911-924.CrossRefPubMed
149.
go back to reference Sebe A, Leivonen S-K, Fintha A, Masszi A, Rosivall L, Kähäri V-M, et al. Transforming growth factor-beta-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38beta mitogen-activated protein kinase, extracellular signal-regulated protein kinase1,2 and the Smad signalling during epithelial-myofibroblast transdifferentiation. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2008;23:1537–45. Sebe A, Leivonen S-K, Fintha A, Masszi A, Rosivall L, Kähäri V-M, et al. Transforming growth factor-beta-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38beta mitogen-activated protein kinase, extracellular signal-regulated protein kinase1,2 and the Smad signalling during epithelial-myofibroblast transdifferentiation. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2008;23:1537–45.
150.
go back to reference Schneider D, Janshoff A. Inhibition of actin dynamics during epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 2012;419:221–5.CrossRefPubMed Schneider D, Janshoff A. Inhibition of actin dynamics during epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 2012;419:221–5.CrossRefPubMed
151.
go back to reference Destaing O, Block MR, Planus E, Albiges-Rizo C. Invadosome regulation by adhesion signaling. Curr Opin Cell Biol. 2011;23:597–606.CrossRefPubMed Destaing O, Block MR, Planus E, Albiges-Rizo C. Invadosome regulation by adhesion signaling. Curr Opin Cell Biol. 2011;23:597–606.CrossRefPubMed
152.
go back to reference Tumbarello DA, Turner CE. Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway. J Cell Physiol. 2007;211:736–47.CrossRefPubMed Tumbarello DA, Turner CE. Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway. J Cell Physiol. 2007;211:736–47.CrossRefPubMed
153.
go back to reference Bianchi-Smiraglia A, Paesante S, Bakin AV. Integrin β5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene. 2013;32:3049–58.CrossRefPubMed Bianchi-Smiraglia A, Paesante S, Bakin AV. Integrin β5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene. 2013;32:3049–58.CrossRefPubMed
154.
go back to reference Mise N, Savai R, Yu H, Schwarz J, Kaminski N, Eickelberg O. Zyxin is a transforming growth factor-β (TGF-β)/Smad3 target gene that regulates lung cancer cell motility via integrin α5β1. J Biol Chem. 2012;287:31393–405.CrossRefPubMedPubMedCentral Mise N, Savai R, Yu H, Schwarz J, Kaminski N, Eickelberg O. Zyxin is a transforming growth factor-β (TGF-β)/Smad3 target gene that regulates lung cancer cell motility via integrin α5β1. J Biol Chem. 2012;287:31393–405.CrossRefPubMedPubMedCentral
155.
go back to reference Mori M, Nakagami H, Koibuchi N, Miura K, Takami Y, Koriyama H, et al. Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Mol Biol Cell. 2009;20:3115–24.CrossRefPubMedPubMedCentral Mori M, Nakagami H, Koibuchi N, Miura K, Takami Y, Koriyama H, et al. Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Mol Biol Cell. 2009;20:3115–24.CrossRefPubMedPubMedCentral
156.
157.
go back to reference Tokuo H, Mabuchi K, Ikebe M. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J Cell Biol. 2007;179:229–38.CrossRefPubMedPubMedCentral Tokuo H, Mabuchi K, Ikebe M. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J Cell Biol. 2007;179:229–38.CrossRefPubMedPubMedCentral
158.
159.
go back to reference Murray D, Horgan G, MacMathuna P, Doran P. NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer. 2008;99:1322–9.CrossRefPubMedPubMedCentral Murray D, Horgan G, MacMathuna P, Doran P. NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer. Br J Cancer. 2008;99:1322–9.CrossRefPubMedPubMedCentral
160.
go back to reference Battaglia RA, Delic S, Herrmann H, Snider NT. Vimentin on the move: new developments in cell migration. Research. 2018;7:1796. Battaglia RA, Delic S, Herrmann H, Snider NT. Vimentin on the move: new developments in cell migration. Research. 2018;7:1796.
161.
go back to reference Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation. 2014;21:333–44.CrossRefPubMed Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation. 2014;21:333–44.CrossRefPubMed
Metadata
Title
TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: a specialized Tau perspective
Authors
Mahima Kapoor
Subashchandrabose Chinnathambi
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02751-8

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue