Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2020

Open Access 01-12-2020 | Alzheimer's Disease | Research

Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer’s disease pathology

Authors: Azhaar Ashraf, Nicholas J. Ashton, Pratishtha Chatterjee, Kathryn Goozee, Kaikai Shen, Jurgen Fripp, David Ames, Christopher Rowe, Colin L. Masters, Victor Villemagne, Abdul Hye, Ralph N. Martins, Po-Wah So, AIBL

Published in: Alzheimer's Research & Therapy | Issue 1/2020

Login to get access

Abstract

Background

Heme and iron homeostasis is perturbed in Alzheimer’s disease (AD); therefore, the aim of the study was to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN), mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts.

Methods

Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relative protein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and 21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteins implicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed to examine the association between heme and iron proteins, structural neuroimaging, and cognitive measures.

Results

Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunit β (p = 0.001) was significantly increased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, and disease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmented brain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance, and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associations between heme/iron proteins in the CN individuals progressing to cognitive impairment.

Conclusions

In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship between heme/iron metabolism and AD warrants further investigation.
Literature
1.
2.
go back to reference Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer’s disease. Lancet. 2016;388(10043):505–17.PubMedCrossRef Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer’s disease. Lancet. 2016;388(10043):505–17.PubMedCrossRef
4.
go back to reference Henneman WJ, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F. Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology. 2009;72(11):999–1007.PubMedPubMedCentralCrossRef Henneman WJ, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F. Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology. 2009;72(11):999–1007.PubMedPubMedCentralCrossRef
5.
go back to reference Shah RC, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Hemoglobin level in older persons and incident Alzheimer disease: prospective cohort analysis. Neurology. 2011;77(3):219–26.PubMedPubMedCentralCrossRef Shah RC, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Hemoglobin level in older persons and incident Alzheimer disease: prospective cohort analysis. Neurology. 2011;77(3):219–26.PubMedPubMedCentralCrossRef
6.
go back to reference Shah RC, Wilson RS, Tang Y, Dong X, Murray A, Bennett DA. Relation of hemoglobin to level of cognitive function in older persons. Neuroepidemiology. 2009;32(1):40–6.PubMedCrossRef Shah RC, Wilson RS, Tang Y, Dong X, Murray A, Bennett DA. Relation of hemoglobin to level of cognitive function in older persons. Neuroepidemiology. 2009;32(1):40–6.PubMedCrossRef
7.
go back to reference Faux NG, Rembach A, Wiley J, Ellis KA, Ames D, Fowler CJ, Martins RN, Pertile KK, Rumble RL, Trounson B, et al. An anemia of Alzheimer’s disease. Mol Psychiatry. 2014;19(11):1227–34.PubMedCrossRef Faux NG, Rembach A, Wiley J, Ellis KA, Ames D, Fowler CJ, Martins RN, Pertile KK, Rumble RL, Trounson B, et al. An anemia of Alzheimer’s disease. Mol Psychiatry. 2014;19(11):1227–34.PubMedCrossRef
8.
go back to reference Hare DJ, Doecke JD, Faux NG, Rembach A, Volitakis I, Fowler CJ, Grimm R, Doble PA, Cherny RA, Masters CL, et al. Decreased plasma iron in Alzheimer’s disease is due to transferrin desaturation. ACS Chem Neurosci. 2015;6(3):398–402.PubMedCrossRef Hare DJ, Doecke JD, Faux NG, Rembach A, Volitakis I, Fowler CJ, Grimm R, Doble PA, Cherny RA, Masters CL, et al. Decreased plasma iron in Alzheimer’s disease is due to transferrin desaturation. ACS Chem Neurosci. 2015;6(3):398–402.PubMedCrossRef
9.
go back to reference Ashraf A, Stosnach H, Parkes HG, Hye A, Powell J, So PW, AddNeuroMed c: Pattern of altered plasma elemental phosphorus, calcium, zinc, and iron in Alzheimer’s disease. Sci Rep 2019, 9(1):3147. Ashraf A, Stosnach H, Parkes HG, Hye A, Powell J, So PW, AddNeuroMed c: Pattern of altered plasma elemental phosphorus, calcium, zinc, and iron in Alzheimer’s disease. Sci Rep 2019, 9(1):3147.
11.
go back to reference Goozee K, Chatterjee P, James I, Shen K, Sohrabi HR, Asih PR, Dave P, ManYan C, Taddei K, Ayton SJ, et al. Elevated plasma ferritin in elderly individuals with high neocortical amyloid-beta load. Mol Psychiatry. 2018;23(8):1807–12.PubMedCrossRef Goozee K, Chatterjee P, James I, Shen K, Sohrabi HR, Asih PR, Dave P, ManYan C, Taddei K, Ayton SJ, et al. Elevated plasma ferritin in elderly individuals with high neocortical amyloid-beta load. Mol Psychiatry. 2018;23(8):1807–12.PubMedCrossRef
12.
go back to reference Jeong SM, Shin DW, Lee JE, Hyeon JH, Lee J, Kim S. Anemia is associated with incidence of dementia: a national health screening study in Korea involving 37,900 persons. Alzheimers Res Ther. 2017;9(1):94.PubMedPubMedCentralCrossRef Jeong SM, Shin DW, Lee JE, Hyeon JH, Lee J, Kim S. Anemia is associated with incidence of dementia: a national health screening study in Korea involving 37,900 persons. Alzheimers Res Ther. 2017;9(1):94.PubMedPubMedCentralCrossRef
13.
go back to reference Tan B, Venketasubramanian N, Vrooman H, Cheng CY, Wong TY, Chen C, Hilal S. Haemoglobin, magnetic resonance imaging markers and cognition: a subsample of population-based study. Alzheimers Res Ther. 2018;10(1):114.PubMedPubMedCentralCrossRef Tan B, Venketasubramanian N, Vrooman H, Cheng CY, Wong TY, Chen C, Hilal S. Haemoglobin, magnetic resonance imaging markers and cognition: a subsample of population-based study. Alzheimers Res Ther. 2018;10(1):114.PubMedPubMedCentralCrossRef
14.
go back to reference Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P, Simone R, Vlachouli C, Plessy C, Bertin N, et al. Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A. 2009;106(36):15454–9.PubMedPubMedCentralCrossRef Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P, Simone R, Vlachouli C, Plessy C, Bertin N, et al. Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A. 2009;106(36):15454–9.PubMedPubMedCentralCrossRef
15.
go back to reference Altinoz MA, Guloksuz S, Schmidt-Kastner R, Kenis G, Ince B, Rutten BPF. Involvement of hemoglobins in the pathophysiology of Alzheimer’s disease. Exp Gerontol. 2019;126:110680.PubMedCrossRef Altinoz MA, Guloksuz S, Schmidt-Kastner R, Kenis G, Ince B, Rutten BPF. Involvement of hemoglobins in the pathophysiology of Alzheimer’s disease. Exp Gerontol. 2019;126:110680.PubMedCrossRef
16.
go back to reference Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF. Neurons express hemoglobin alpha- and beta-chains in rat and human brains. J Comp Neurol. 2009;515(5):538–47.PubMedPubMedCentralCrossRef Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF. Neurons express hemoglobin alpha- and beta-chains in rat and human brains. J Comp Neurol. 2009;515(5):538–47.PubMedPubMedCentralCrossRef
17.
go back to reference Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci. 2003;23(9):3807–19.PubMedPubMedCentralCrossRef Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci. 2003;23(9):3807–19.PubMedPubMedCentralCrossRef
18.
go back to reference Chuang JY, Lee CW, Shih YH, Yang T, Yu L, Kuo YM. Interactions between amyloid-beta and hemoglobin: implications for amyloid plaque formation in Alzheimer’s disease. PLoS One. 2012;7(3):e33120.PubMedPubMedCentralCrossRef Chuang JY, Lee CW, Shih YH, Yang T, Yu L, Kuo YM. Interactions between amyloid-beta and hemoglobin: implications for amyloid plaque formation in Alzheimer’s disease. PLoS One. 2012;7(3):e33120.PubMedPubMedCentralCrossRef
19.
go back to reference Wu CW, Liao PC, Yu L, Wang ST, Chen ST, Wu CM, Kuo YM. Hemoglobin promotes Abeta oligomer formation and localizes in neurons and amyloid deposits. Neurobiol Dis. 2004;17(3):367–77.PubMedCrossRef Wu CW, Liao PC, Yu L, Wang ST, Chen ST, Wu CM, Kuo YM. Hemoglobin promotes Abeta oligomer formation and localizes in neurons and amyloid deposits. Neurobiol Dis. 2004;17(3):367–77.PubMedCrossRef
20.
go back to reference Masuoka N, Kodama H, Abe T, Wang DH, Nakano T. Characterization of hydrogen peroxide removal reaction by hemoglobin in the presence of reduced pyridine nucleotides. Biochim Biophys Acta. 2003;1637(1):46–54.PubMedCrossRef Masuoka N, Kodama H, Abe T, Wang DH, Nakano T. Characterization of hydrogen peroxide removal reaction by hemoglobin in the presence of reduced pyridine nucleotides. Biochim Biophys Acta. 2003;1637(1):46–54.PubMedCrossRef
21.
go back to reference Schelshorn DW, Schneider A, Kuschinsky W, Weber D, Kruger C, Dittgen T, Burgers HF, Sabouri F, Gassler N, Bach A, et al. Expression of hemoglobin in rodent neurons. J Cereb Blood Flow Metab. 2009;29(3):585–95.PubMedCrossRef Schelshorn DW, Schneider A, Kuschinsky W, Weber D, Kruger C, Dittgen T, Burgers HF, Sabouri F, Gassler N, Bach A, et al. Expression of hemoglobin in rodent neurons. J Cereb Blood Flow Metab. 2009;29(3):585–95.PubMedCrossRef
22.
go back to reference Yang H, Qiao H, Tian X. Proteomic analysis of cerebral synaptosomes isolated from rat model of Alzheimer’s disease. Indian J Exp Biol. 2011;49(2):118–24.PubMed Yang H, Qiao H, Tian X. Proteomic analysis of cerebral synaptosomes isolated from rat model of Alzheimer’s disease. Indian J Exp Biol. 2011;49(2):118–24.PubMed
23.
go back to reference Brown N, Alkhayer K, Clements R, Singhal N, Gregory R, Azzam S, Li S, Freeman E, McDonough J. Neuronal hemoglobin expression and its relevance to multiple sclerosis neuropathology. J Mol Neurosci. 2016;59(1):1–17.PubMedPubMedCentralCrossRef Brown N, Alkhayer K, Clements R, Singhal N, Gregory R, Azzam S, Li S, Freeman E, McDonough J. Neuronal hemoglobin expression and its relevance to multiple sclerosis neuropathology. J Mol Neurosci. 2016;59(1):1–17.PubMedPubMedCentralCrossRef
24.
go back to reference Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK, Columbus L, Gaston B, et al. Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling. Nature. 2012;491(7424):473–7.PubMedPubMedCentralCrossRef Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK, Columbus L, Gaston B, et al. Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling. Nature. 2012;491(7424):473–7.PubMedPubMedCentralCrossRef
25.
go back to reference Ferrer I, Gomez A, Carmona M, Huesa G, Porta S, Riera-Codina M, Biagioli M, Gustincich S, Aso E. Neuronal hemoglobin is reduced in Alzheimer’s disease, argyrophilic grain disease, Parkinson’s disease, and dementia with Lewy bodies. J Alzheimers Dis. 2011;23(3):537–50.PubMedCrossRef Ferrer I, Gomez A, Carmona M, Huesa G, Porta S, Riera-Codina M, Biagioli M, Gustincich S, Aso E. Neuronal hemoglobin is reduced in Alzheimer’s disease, argyrophilic grain disease, Parkinson’s disease, and dementia with Lewy bodies. J Alzheimers Dis. 2011;23(3):537–50.PubMedCrossRef
26.
go back to reference Spellman DS, Wildsmith KR, Honigberg LA, Tuefferd M, Baker D, Raghavan N, Nairn AC, Croteau P, Schirm M, Allard R, et al. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer’s disease neuroimaging initiative (ADNI) CSF. Proteomics Clin Appl. 2015;9(7–8):715–31.PubMedPubMedCentralCrossRef Spellman DS, Wildsmith KR, Honigberg LA, Tuefferd M, Baker D, Raghavan N, Nairn AC, Croteau P, Schirm M, Allard R, et al. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer’s disease neuroimaging initiative (ADNI) CSF. Proteomics Clin Appl. 2015;9(7–8):715–31.PubMedPubMedCentralCrossRef
27.
go back to reference Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202(2):199–211.PubMedCrossRef Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202(2):199–211.PubMedCrossRef
29.
go back to reference Tolosano E, Altruda F. Hemopexin: structure, function, and regulation. DNA Cell Biol. 2002;21(4):297–306.PubMedCrossRef Tolosano E, Altruda F. Hemopexin: structure, function, and regulation. DNA Cell Biol. 2002;21(4):297–306.PubMedCrossRef
30.
go back to reference Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res. 2006;28(2):155–63.PubMedCrossRef Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res. 2006;28(2):155–63.PubMedCrossRef
31.
go back to reference Davidsson P, Folkesson S, Christiansson M, Lindbjer M, Dellheden B, Blennow K, Westman-Brinkmalm A. Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2002;16(22):2083–8.PubMedCrossRef Davidsson P, Folkesson S, Christiansson M, Lindbjer M, Dellheden B, Blennow K, Westman-Brinkmalm A. Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2002;16(22):2083–8.PubMedCrossRef
32.
go back to reference Chen L, Zhang X, Chen-Roetling J, Regan RF. Increased striatal injury and behavioral deficits after intracerebral hemorrhage in hemopexin knockout mice. J Neurosurg. 2011;114(4):1159–67.PubMedCrossRef Chen L, Zhang X, Chen-Roetling J, Regan RF. Increased striatal injury and behavioral deficits after intracerebral hemorrhage in hemopexin knockout mice. J Neurosurg. 2011;114(4):1159–67.PubMedCrossRef
33.
go back to reference Ma B, Day JP, Phillips H, Slootsky B, Tolosano E, Dore S. Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation. 2016;13:26.PubMedPubMedCentralCrossRef Ma B, Day JP, Phillips H, Slootsky B, Tolosano E, Dore S. Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation. 2016;13:26.PubMedPubMedCentralCrossRef
34.
go back to reference Hahl P, Davis T, Washburn C, Rogers JT, Smith A. Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. J Neurochem. 2013;125(1):89–101.PubMedCrossRef Hahl P, Davis T, Washburn C, Rogers JT, Smith A. Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. J Neurochem. 2013;125(1):89–101.PubMedCrossRef
35.
go back to reference Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, Gupta VB, Rainey-Smith SR, et al. Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies-gains from AIBL and DIAN cohort studies. J Alzheimers Dis. 2018;62(3):965–92.PubMedPubMedCentralCrossRef Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Fraser P, Taddei K, Gupta VB, Rainey-Smith SR, et al. Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies-gains from AIBL and DIAN cohort studies. J Alzheimers Dis. 2018;62(3):965–92.PubMedPubMedCentralCrossRef
36.
go back to reference Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr. 2009;21(4):672–87.PubMedCrossRef Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr. 2009;21(4):672–87.PubMedCrossRef
37.
go back to reference Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, Fripp J, Tochon-Danguy H, Morandeau L, O'Keefe G, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31(8):1275–83.PubMedCrossRef Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, Fripp J, Tochon-Danguy H, Morandeau L, O'Keefe G, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging. 2010;31(8):1275–83.PubMedCrossRef
38.
go back to reference Ashton NJ, Nevado-Holgado AJ, Barber IS, Lynham S, Gupta V, Chatterjee P, Goozee K, Hone E, Pedrini S, Blennow K, et al. A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease. Sci Adv. 2019;5(2):eaau7220.PubMedPubMedCentralCrossRef Ashton NJ, Nevado-Holgado AJ, Barber IS, Lynham S, Gupta V, Chatterjee P, Goozee K, Hone E, Pedrini S, Blennow K, et al. A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease. Sci Adv. 2019;5(2):eaau7220.PubMedPubMedCentralCrossRef
39.
go back to reference Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.PubMedCrossRef Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.PubMedCrossRef
40.
go back to reference Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.PubMedCrossRef Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.PubMedCrossRef
41.
go back to reference Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.PubMedCrossRef Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6.PubMedCrossRef
42.
go back to reference McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.PubMedCrossRef McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.PubMedCrossRef
43.
go back to reference Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.PubMedCrossRef Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.PubMedCrossRef
44.
go back to reference American Psychiatric A, Task Force on D-I, Frances AA, Pincus HA, First MB: Diagnostic and statistical manual of mental disorders. DMS-IV. DMS-IV. Washington: American Psychiatric Association; 1994. American Psychiatric A, Task Force on D-I, Frances AA, Pincus HA, First MB: Diagnostic and statistical manual of mental disorders. DMS-IV. DMS-IV. Washington: American Psychiatric Association; 1994.
45.
go back to reference World Health O. The ICD-10 classification of mental and behavioural disorders : diagnostic criteria for research. Geneva: World Health Organization; 2003. World Health O. The ICD-10 classification of mental and behavioural disorders : diagnostic criteria for research. Geneva: World Health Organization; 2003.
46.
go back to reference Chen JJ, Roberson PK, Schell MJ. The false discovery rate: a key concept in large-scale genetic studies. Cancer Control. 2010;17(1):58–62.PubMedCrossRef Chen JJ, Roberson PK, Schell MJ. The false discovery rate: a key concept in large-scale genetic studies. Cancer Control. 2010;17(1):58–62.PubMedCrossRef
47.
go back to reference Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis. 2015;81:49–65.PubMedPubMedCentralCrossRef Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis. 2015;81:49–65.PubMedPubMedCentralCrossRef
48.
go back to reference Atamna H, Frey WH 2nd. A role for heme in Alzheimer’s disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A. 2004;101(30):11153–8.PubMedPubMedCentralCrossRef Atamna H, Frey WH 2nd. A role for heme in Alzheimer’s disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A. 2004;101(30):11153–8.PubMedPubMedCentralCrossRef
49.
go back to reference Sankar SB, Donegan RK, Shah KJ, Reddi AR, Wood LB. Heme and hemoglobin suppress amyloid beta-mediated inflammatory activation of mouse astrocytes. J Biol Chem. 2018;293(29):11358–73.PubMedPubMedCentralCrossRef Sankar SB, Donegan RK, Shah KJ, Reddi AR, Wood LB. Heme and hemoglobin suppress amyloid beta-mediated inflammatory activation of mouse astrocytes. J Biol Chem. 2018;293(29):11358–73.PubMedPubMedCentralCrossRef
50.
go back to reference Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011;6(8):e23789.PubMedPubMedCentralCrossRef Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011;6(8):e23789.PubMedPubMedCentralCrossRef
51.
go back to reference Atamna H, Boyle K. Amyloid-beta peptide binds with heme to form a peroxidase: relationship to the cytopathologies of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103(9):3381–6.PubMedPubMedCentralCrossRef Atamna H, Boyle K. Amyloid-beta peptide binds with heme to form a peroxidase: relationship to the cytopathologies of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103(9):3381–6.PubMedPubMedCentralCrossRef
52.
go back to reference Flemmig J, Zamocky M, Alia A. Amyloid beta and free heme: bloody new insights into the pathogenesis of Alzheimer’s disease. Neural Regen Res. 2018;13(7):1170–4.PubMedPubMedCentralCrossRef Flemmig J, Zamocky M, Alia A. Amyloid beta and free heme: bloody new insights into the pathogenesis of Alzheimer’s disease. Neural Regen Res. 2018;13(7):1170–4.PubMedPubMedCentralCrossRef
53.
go back to reference Pramanik D, Dey SG. Active site environment of heme-bound amyloid beta peptide associated with Alzheimer’s disease. J Am Chem Soc. 2011;133(1):81–7.PubMedCrossRef Pramanik D, Dey SG. Active site environment of heme-bound amyloid beta peptide associated with Alzheimer’s disease. J Am Chem Soc. 2011;133(1):81–7.PubMedCrossRef
54.
go back to reference Lu N, Li J, Tian R, Peng YY. Key roles of Arg(5), Tyr(10) and his residues in Abeta-heme peroxidase: relevance to Alzheimer’s disease. Biochem Biophys Res Commun. 2014;452(3):676–81.PubMedCrossRef Lu N, Li J, Tian R, Peng YY. Key roles of Arg(5), Tyr(10) and his residues in Abeta-heme peroxidase: relevance to Alzheimer’s disease. Biochem Biophys Res Commun. 2014;452(3):676–81.PubMedCrossRef
55.
go back to reference Al-Hilaly YK, Williams TL, Stewart-Parker M, Ford L, Skaria E, Cole M, Bucher WG, Morris KL, Sada AA, Thorpe JR, et al. A central role for dityrosine crosslinking of amyloid-beta in Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:83.PubMedPubMedCentralCrossRef Al-Hilaly YK, Williams TL, Stewart-Parker M, Ford L, Skaria E, Cole M, Bucher WG, Morris KL, Sada AA, Thorpe JR, et al. A central role for dityrosine crosslinking of amyloid-beta in Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:83.PubMedPubMedCentralCrossRef
56.
go back to reference Pirota V, Monzani E, Dell'Acqua S, Casella L. Interactions between heme and tau-derived R1 peptides: binding and oxidative reactivity. Dalton Trans. 2016;45(36):14343–51.PubMedCrossRef Pirota V, Monzani E, Dell'Acqua S, Casella L. Interactions between heme and tau-derived R1 peptides: binding and oxidative reactivity. Dalton Trans. 2016;45(36):14343–51.PubMedCrossRef
57.
go back to reference Hahl P, Hunt R, Bjes ES, Skaff A, Keightley A, Smith A. Identification of oxidative modifications of hemopexin and their predicted physiological relevance. J Biol Chem. 2017;292(33):13658–71.PubMedPubMedCentralCrossRef Hahl P, Hunt R, Bjes ES, Skaff A, Keightley A, Smith A. Identification of oxidative modifications of hemopexin and their predicted physiological relevance. J Biol Chem. 2017;292(33):13658–71.PubMedPubMedCentralCrossRef
58.
go back to reference Yu HL, Chertkow HM, Bergman H, Schipper HM. Aberrant profiles of native and oxidized glycoproteins in Alzheimer plasma. Proteomics. 2003;3(11):2240–8.PubMedCrossRef Yu HL, Chertkow HM, Bergman H, Schipper HM. Aberrant profiles of native and oxidized glycoproteins in Alzheimer plasma. Proteomics. 2003;3(11):2240–8.PubMedCrossRef
59.
go back to reference Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK. Identification of the receptor scavenging hemopexin-heme complexes. Blood. 2005;106(7):2572–9.PubMedCrossRef Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK. Identification of the receptor scavenging hemopexin-heme complexes. Blood. 2005;106(7):2572–9.PubMedCrossRef
60.
go back to reference Buehler PW, Abraham B, Vallelian F, Linnemayr C, Pereira CP, Cipollo JF, Jia Y, Mikolajczyk M, Boretti FS, Schoedon G, et al. Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood. 2009;113(11):2578–86.PubMedCrossRef Buehler PW, Abraham B, Vallelian F, Linnemayr C, Pereira CP, Cipollo JF, Jia Y, Mikolajczyk M, Boretti FS, Schoedon G, et al. Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood. 2009;113(11):2578–86.PubMedCrossRef
61.
go back to reference Cocciolo A, Di Domenico F, Coccia R, Fiorini A, Cai J, Pierce WM, Mecocci P, Butterfield DA, Perluigi M. Decreased expression and increased oxidation of plasma haptoglobin in Alzheimer disease: insights from redox proteomics. Free Radic Biol Med. 2012;53(10):1868–76.PubMedCrossRef Cocciolo A, Di Domenico F, Coccia R, Fiorini A, Cai J, Pierce WM, Mecocci P, Butterfield DA, Perluigi M. Decreased expression and increased oxidation of plasma haptoglobin in Alzheimer disease: insights from redox proteomics. Free Radic Biol Med. 2012;53(10):1868–76.PubMedCrossRef
62.
go back to reference Yerbury JJ, Poon S, Meehan S, Thompson B, Kumita JR, Dobson CM, Wilson MR. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 2007;21(10):2312–22.PubMedCrossRef Yerbury JJ, Poon S, Meehan S, Thompson B, Kumita JR, Dobson CM, Wilson MR. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J. 2007;21(10):2312–22.PubMedCrossRef
64.
go back to reference Torsdottir G, Kristinsson J, Snaedal J, Johannesson T. Ceruloplasmin and iron proteins in the serum of patients with Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2011;1(1):366–71.PubMedPubMedCentralCrossRef Torsdottir G, Kristinsson J, Snaedal J, Johannesson T. Ceruloplasmin and iron proteins in the serum of patients with Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2011;1(1):366–71.PubMedPubMedCentralCrossRef
65.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefPubMed Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefPubMed
66.
go back to reference Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, Caswell C, Van Deerlin VM, Yan N, Yousef A, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–93.PubMedPubMedCentralCrossRef Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, Caswell C, Van Deerlin VM, Yan N, Yousef A, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–93.PubMedPubMedCentralCrossRef
67.
go back to reference Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem. 2002;82(5):1137–47.PubMedCrossRef Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem. 2002;82(5):1137–47.PubMedCrossRef
68.
go back to reference Xiao Y, Chen X, Huang S, Li G, Mo M, Zhang L, Chen C, Guo W, Zhou M, Wu Z, et al. Iron promotes alpha-synuclein aggregation and transmission by inhibiting TFEB-mediated autophagosome-lysosome fusion. J Neurochem. 2018;145(1):34–50.PubMedCrossRef Xiao Y, Chen X, Huang S, Li G, Mo M, Zhang L, Chen C, Guo W, Zhou M, Wu Z, et al. Iron promotes alpha-synuclein aggregation and transmission by inhibiting TFEB-mediated autophagosome-lysosome fusion. J Neurochem. 2018;145(1):34–50.PubMedCrossRef
69.
go back to reference Joppe K, Roser AE, Maass F, Lingor P. The contribution of iron to protein aggregation disorders in the central nervous system. Front Neurosci. 2019;13:15.PubMedPubMedCentralCrossRef Joppe K, Roser AE, Maass F, Lingor P. The contribution of iron to protein aggregation disorders in the central nervous system. Front Neurosci. 2019;13:15.PubMedPubMedCentralCrossRef
70.
go back to reference Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2009;29(3):610–9.PubMedPubMedCentralCrossRef Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2009;29(3):610–9.PubMedPubMedCentralCrossRef
71.
go back to reference Ashraf A, Jeandriens J, Parkes HG, So PW. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: evidence of ferroptosis. Redox Biol. 2020;32:101494.PubMedPubMedCentralCrossRef Ashraf A, Jeandriens J, Parkes HG, So PW. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: evidence of ferroptosis. Redox Biol. 2020;32:101494.PubMedPubMedCentralCrossRef
72.
go back to reference Ayton S, Fazlollahi A, Bourgeat P, Raniga P, Ng A, Lim YY, Diouf I, Farquharson S, Fripp J, Ames D, et al. Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain. 2017;140(8):2112–9.PubMedCrossRef Ayton S, Fazlollahi A, Bourgeat P, Raniga P, Ng A, Lim YY, Diouf I, Farquharson S, Fripp J, Ames D, et al. Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain. 2017;140(8):2112–9.PubMedCrossRef
73.
go back to reference Du L, Zhao Z, Cui A, Zhu Y, Zhang L, Liu J, Shi S, Fu C, Han X, Gao W, et al. Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer’s disease. ACS Chem Neurosci. 2018;9(7):1849–57.PubMedCrossRef Du L, Zhao Z, Cui A, Zhu Y, Zhang L, Liu J, Shi S, Fu C, Han X, Gao W, et al. Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer’s disease. ACS Chem Neurosci. 2018;9(7):1849–57.PubMedCrossRef
74.
go back to reference Tao Y, Wang Y, Rogers JT, Wang F. Perturbed iron distribution in Alzheimer’s disease serum, cerebrospinal fluid, and selected brain regions: a systematic review and meta-analysis. J Alzheimers Dis. 2014;42(2):679–90.PubMedCrossRef Tao Y, Wang Y, Rogers JT, Wang F. Perturbed iron distribution in Alzheimer’s disease serum, cerebrospinal fluid, and selected brain regions: a systematic review and meta-analysis. J Alzheimers Dis. 2014;42(2):679–90.PubMedCrossRef
75.
go back to reference Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T, Chai WM, Zhang H, Zhan Y, Guan YJ. Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. J Magn Reson Imaging. 2009;29(4):793–8.PubMedCrossRef Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T, Chai WM, Zhang H, Zhan Y, Guan YJ. Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. J Magn Reson Imaging. 2009;29(4):793–8.PubMedCrossRef
76.
go back to reference Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR. In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry. 1994;35(7):480–7.PubMedCrossRef Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK, Marder SR. In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry. 1994;35(7):480–7.PubMedCrossRef
77.
go back to reference Luo Z, Zhuang X, Kumar D, Wu X, Yue C, Han C, Lv J. The correlation of hippocampal T2-mapping with neuropsychology test in patients with Alzheimer’s disease. PLoS One. 2013;8(9):e76203.PubMedPubMedCentralCrossRef Luo Z, Zhuang X, Kumar D, Wu X, Yue C, Han C, Lv J. The correlation of hippocampal T2-mapping with neuropsychology test in patients with Alzheimer’s disease. PLoS One. 2013;8(9):e76203.PubMedPubMedCentralCrossRef
78.
go back to reference Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221–33.PubMedCrossRef Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221–33.PubMedCrossRef
79.
go back to reference Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z. Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging. 2006;27(2):252–61.PubMedCrossRef Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z. Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging. 2006;27(2):252–61.PubMedCrossRef
80.
go back to reference Wang D, Hui Y, Peng Y, Tang L, Jin J, He R, Li Y, Zhang S, Li L, Zhou Y, et al. Overexpression of heme oxygenase 1 causes cognitive decline and affects pathways for tauopathy in mice. J Alzheimers Dis. 2015;43(2):519–34.PubMedCrossRef Wang D, Hui Y, Peng Y, Tang L, Jin J, He R, Li Y, Zhang S, Li L, Zhou Y, et al. Overexpression of heme oxygenase 1 causes cognitive decline and affects pathways for tauopathy in mice. J Alzheimers Dis. 2015;43(2):519–34.PubMedCrossRef
81.
go back to reference Sripetchwandee J, Wongjaikam S, Krintratun W, Chattipakorn N, Chattipakorn SC. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-beta accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload. Neuroscience. 2016;332:191–202.PubMedCrossRef Sripetchwandee J, Wongjaikam S, Krintratun W, Chattipakorn N, Chattipakorn SC. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-beta accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload. Neuroscience. 2016;332:191–202.PubMedCrossRef
82.
go back to reference Slemmon JR, Hughes CM, Campbell GA, Flood DG. Increased levels of hemoglobin-derived and other peptides in Alzheimer’s disease cerebellum. J Neurosci. 1994;14(4):2225–35.PubMedPubMedCentralCrossRef Slemmon JR, Hughes CM, Campbell GA, Flood DG. Increased levels of hemoglobin-derived and other peptides in Alzheimer’s disease cerebellum. J Neurosci. 1994;14(4):2225–35.PubMedPubMedCentralCrossRef
83.
go back to reference Bosman GJ, Bartholomeus IG, de Man AJ, van Kalmthout PJ, de Grip WJ. Erythrocyte membrane characteristics indicate abnormal cellular aging in patients with Alzheimer’s disease. Neurobiol Aging. 1991;12(1):13–8.PubMedCrossRef Bosman GJ, Bartholomeus IG, de Man AJ, van Kalmthout PJ, de Grip WJ. Erythrocyte membrane characteristics indicate abnormal cellular aging in patients with Alzheimer’s disease. Neurobiol Aging. 1991;12(1):13–8.PubMedCrossRef
Metadata
Title
Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer’s disease pathology
Authors
Azhaar Ashraf
Nicholas J. Ashton
Pratishtha Chatterjee
Kathryn Goozee
Kaikai Shen
Jurgen Fripp
David Ames
Christopher Rowe
Colin L. Masters
Victor Villemagne
Abdul Hye
Ralph N. Martins
Po-Wah So
AIBL
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2020
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-020-00634-1

Other articles of this Issue 1/2020

Alzheimer's Research & Therapy 1/2020 Go to the issue