Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

Open Access 01-12-2022 | Alzheimer's Disease | Research

MicroRNA-22-3p ameliorates Alzheimer’s disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus

Authors: Pengcheng Xia, Jing Chen, Yingchao Liu, Xiaolin Cui, Cuicui Wang, Shuai Zong, Le Wang, Zhiming Lu

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

Background

Studies have suggested that many down-regulated miRNAs identified in the brain tissue or serum of Alzheimer’s disease (AD) patients were involved in the formation of senile plaques and neurofibrillary tangles. Specifically, our previous study revealed that microRNA-22-3p (miR-22-3p) was significantly down-regulated in AD patients. However, the molecular mechanism underlying the down-regulation of miR-22-3p has not been comprehensively investigated.

Methods

The ameliorating effect of miR-22-3p on apoptosis of the Aβ-treated HT22 cells was detected by TUNEL staining, flow cytometry, and western blotting. The cognition of mice with stereotaxic injection of agomir or antagomir of miR-22-3p was assessed by Morris water maze test. Pathological changes in the mouse hippocampus were analyzed using hematoxylin and eosin (HE) staining, Nissl staining, and immunohistochemistry. Proteomics analysis was performed to identify the targets of miR-22-3p, which were further validated using dual-luciferase reporter analysis and western blotting analysis.

Results

The miR-22-3p played an important role in ameliorating apoptosis in the Aβ-treated HT22 cells. Increased levels of miR-22-3p in the mouse hippocampus improved the cognition in mice. Although the miR-22-3p did not cause the decrease of neuronal loss in the hippocampus, it reduced the Aβ deposition. Proteomics analysis revealed Sox9 protein as the target of miR-22-3p, which was verified by the luciferase reporter experiments.

Conclusion

Our study showed that miR-22-3p could improve apoptosis and reduce Aβ deposition by acting on Sox9 through the NF-κB signaling pathway to improve the cognition in AD mice. We concluded that miR-22-3p ameliorated AD by targeting Sox9 through the NF-κB signaling pathway in the hippocampus.
Appendix
Available only for authorised users
Literature
2.
go back to reference Brookmeyer R, Abdalla N, Kawas C, Corrada M. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimer’s Dementia. 2018;14:121–9.PubMedCrossRef Brookmeyer R, Abdalla N, Kawas C, Corrada M. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimer’s Dementia. 2018;14:121–9.PubMedCrossRef
3.
go back to reference Dansson H, Stempfle L, Egilsdóttir H, Schliep A, Portelius E, Blennow K, Zetterberg H, Johansson F. Predicting progression and cognitive decline in amyloid-positive patients with Alzheimer’s disease. Alzheimer’s Res Therapy. 2021;13:151.CrossRef Dansson H, Stempfle L, Egilsdóttir H, Schliep A, Portelius E, Blennow K, Zetterberg H, Johansson F. Predicting progression and cognitive decline in amyloid-positive patients with Alzheimer’s disease. Alzheimer’s Res Therapy. 2021;13:151.CrossRef
4.
go back to reference Moloney C, Lowe V, Murray M. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: a clinicopathologic perspective for biomarker research. Alzheimer’s Dementia. 2021;17:1554–74.PubMedCrossRef Moloney C, Lowe V, Murray M. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: a clinicopathologic perspective for biomarker research. Alzheimer’s Dementia. 2021;17:1554–74.PubMedCrossRef
5.
go back to reference Abbott A. Could drugs prevent Alzheimer’s? These trials aim to find out. Nature. 2022;603:216–9.PubMedCrossRef Abbott A. Could drugs prevent Alzheimer’s? These trials aim to find out. Nature. 2022;603:216–9.PubMedCrossRef
6.
go back to reference Chavda V, Madhwani K. Coding and non-coding nucleotides’: the future of stroke gene therapeutics. Genomics. 2021;113:1291–307.PubMedCrossRef Chavda V, Madhwani K. Coding and non-coding nucleotides’: the future of stroke gene therapeutics. Genomics. 2021;113:1291–307.PubMedCrossRef
7.
go back to reference Liu S, Fan M, Zheng Q, Hao S, Yang L, Xia Q, Qi C, Ge J. MicroRNAs in Alzheimer’s disease: potential diagnostic markers and therapeutic targets. Biomed Pharmacother Biomedecine pharmacotherapie. 2022;148:112681.PubMedCrossRef Liu S, Fan M, Zheng Q, Hao S, Yang L, Xia Q, Qi C, Ge J. MicroRNAs in Alzheimer’s disease: potential diagnostic markers and therapeutic targets. Biomed Pharmacother Biomedecine pharmacotherapie. 2022;148:112681.PubMedCrossRef
8.
go back to reference Lozano-Velasco E, Garcia-Padilla C, Del Mar Muñoz-Gallardo M, Martinez-Amaro F, Caño-Carrillo S, Castillo-Casas J, Sanchez-Fernandez C, Aranega A, Franco D. Post-transcriptional regulation of molecular determinants during cardiogenesis. Int J Mol Sci. 2022; 23. Lozano-Velasco E, Garcia-Padilla C, Del Mar Muñoz-Gallardo M, Martinez-Amaro F, Caño-Carrillo S, Castillo-Casas J, Sanchez-Fernandez C, Aranega A, Franco D. Post-transcriptional regulation of molecular determinants during cardiogenesis. Int J Mol Sci. 2022; 23.
9.
go back to reference Wälchli T, Farnhammer F, Fish J. MicroRNA-based regulation of embryonic endothelial cell heterogeneity at single-cell resolution. Arterioscler Thromb Vasc Biol. 2022;42:343–7.PubMedCrossRef Wälchli T, Farnhammer F, Fish J. MicroRNA-based regulation of embryonic endothelial cell heterogeneity at single-cell resolution. Arterioscler Thromb Vasc Biol. 2022;42:343–7.PubMedCrossRef
10.
go back to reference Xue S, Zheng B, Cao S, Ding J, Hu G, Liu W, Chen C. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer. 2022;21:69.PubMedPubMedCentralCrossRef Xue S, Zheng B, Cao S, Ding J, Hu G, Liu W, Chen C. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer. 2022;21:69.PubMedPubMedCentralCrossRef
11.
go back to reference Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, Lill C, Perneczky R, Bertram L. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimer’s Dementia. 2019;15:1468–77.PubMedCrossRef Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, Lill C, Perneczky R, Bertram L. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimer’s Dementia. 2019;15:1468–77.PubMedCrossRef
12.
go back to reference Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and Rutin for synergistic therapy of Alzheimer’s disease. Small. 2022;18:e2107534.PubMedCrossRef Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and Rutin for synergistic therapy of Alzheimer’s disease. Small. 2022;18:e2107534.PubMedCrossRef
13.
go back to reference Zhuang J, Chen Z, Cai P, Wang R, Yang Q, Li L, Yang H, Zhu R. Targeting MicroRNA-125b promotes neurite outgrowth but represses cell apoptosis and inflammation via blocking PTGS2 and CDK5 in a FOXQ1-dependent way in Alzheimer disease. Front Cell Neurosci. 2020;14: 587747.PubMedPubMedCentralCrossRef Zhuang J, Chen Z, Cai P, Wang R, Yang Q, Li L, Yang H, Zhu R. Targeting MicroRNA-125b promotes neurite outgrowth but represses cell apoptosis and inflammation via blocking PTGS2 and CDK5 in a FOXQ1-dependent way in Alzheimer disease. Front Cell Neurosci. 2020;14: 587747.PubMedPubMedCentralCrossRef
14.
go back to reference Walgrave H, Balusu S, Snoeck S, Vanden Eynden E, Craessaerts K, Thrupp N, Wolfs L, Horré K, Fourne Y, Ronisz A, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell. 2021;28:1805-1821.e1808.PubMedCrossRef Walgrave H, Balusu S, Snoeck S, Vanden Eynden E, Craessaerts K, Thrupp N, Wolfs L, Horré K, Fourne Y, Ronisz A, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell. 2021;28:1805-1821.e1808.PubMedCrossRef
15.
go back to reference Guo R, Fan G, Zhang J, Wu C, Du Y, Ye H, Li Z, Wang L, Zhang Z, Zhang L, et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J Alzheimer’s Dis JAD. 2017;60:1365–77.PubMedCrossRef Guo R, Fan G, Zhang J, Wu C, Du Y, Ye H, Li Z, Wang L, Zhang Z, Zhang L, et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J Alzheimer’s Dis JAD. 2017;60:1365–77.PubMedCrossRef
16.
go back to reference Ji Q, Wang X, Cai J, Du X, Sun H, Zhang N. MiR-22-3p regulates amyloid β deposit in mice model of Alzheimer’s disease by targeting mitogen-activated protein kinase 14. Curr Neurovasc Res. 2019;16:473–80.PubMedCrossRef Ji Q, Wang X, Cai J, Du X, Sun H, Zhang N. MiR-22-3p regulates amyloid β deposit in mice model of Alzheimer’s disease by targeting mitogen-activated protein kinase 14. Curr Neurovasc Res. 2019;16:473–80.PubMedCrossRef
17.
go back to reference Han C, Guo L, Yang Y, Guan Q, Shen H, Sheng Y, Jiao Q. Mechanism of microRNA-22 in regulating neuroinflammation in Alzheimer’s disease. Brain and behavior. 2020;10: e01627.PubMedPubMedCentral Han C, Guo L, Yang Y, Guan Q, Shen H, Sheng Y, Jiao Q. Mechanism of microRNA-22 in regulating neuroinflammation in Alzheimer’s disease. Brain and behavior. 2020;10: e01627.PubMedPubMedCentral
18.
go back to reference Kosel F, Pelley J, Franklin T. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer’s disease-related pathology. Neurosci Biobehav Rev. 2020;112:634–47.PubMedCrossRef Kosel F, Pelley J, Franklin T. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer’s disease-related pathology. Neurosci Biobehav Rev. 2020;112:634–47.PubMedCrossRef
19.
go back to reference Kavakiotis I, Alexiou A, Tastsoglou S, Vlachos I, Hatzigeorgiou A. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Res. 2022;50:D1055–61.PubMedCrossRef Kavakiotis I, Alexiou A, Tastsoglou S, Vlachos I, Hatzigeorgiou A. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Res. 2022;50:D1055–61.PubMedCrossRef
20.
go back to reference Cribbs D, Berchtold N, Perreau V, Coleman P, Rogers J, Tenner A, Cotman C. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012;9:179.PubMedPubMedCentralCrossRef Cribbs D, Berchtold N, Perreau V, Coleman P, Rogers J, Tenner A, Cotman C. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012;9:179.PubMedPubMedCentralCrossRef
21.
go back to reference Shigemizu D, Akiyama S, Asanomi Y, Boroevich K, Sharma A, Tsunoda T, Sakurai T, Ozaki K, Ochiya T, Niida S. A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data. BMC Med Genomics. 2019;12:150.PubMedPubMedCentralCrossRef Shigemizu D, Akiyama S, Asanomi Y, Boroevich K, Sharma A, Tsunoda T, Sakurai T, Ozaki K, Ochiya T, Niida S. A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data. BMC Med Genomics. 2019;12:150.PubMedPubMedCentralCrossRef
22.
go back to reference Bellacosa A, Testa J, Staal S, Tsichlis P. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science (New York, NY). 1991;254:274–7. Bellacosa A, Testa J, Staal S, Tsichlis P. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science (New York, NY). 1991;254:274–7.
23.
go back to reference van Praag H, Schinder A, Christie B, Toni N, Palmer T, Gage F. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4.PubMedCrossRef van Praag H, Schinder A, Christie B, Toni N, Palmer T, Gage F. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4.PubMedCrossRef
24.
go back to reference Bazrgar M, Khodabakhsh P, Dargahi L, Mohagheghi F, Ahmadiani A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer’s like rat model. Exp Gerontol. 2022:111812. Bazrgar M, Khodabakhsh P, Dargahi L, Mohagheghi F, Ahmadiani A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer’s like rat model. Exp Gerontol. 2022:111812.
25.
go back to reference Zhu Y, Xu H, Chen H, Xie J, Shi M, Shen B, Deng X, Liu C, Zhan X, Peng C. Proteomic analysis of solid pseudopapillary tumor of the pancreas reveals dysfunction of the endoplasmic reticulum protein processing pathway. Mol Cell Proteom MCP. 2014;13:2593–603.CrossRef Zhu Y, Xu H, Chen H, Xie J, Shi M, Shen B, Deng X, Liu C, Zhan X, Peng C. Proteomic analysis of solid pseudopapillary tumor of the pancreas reveals dysfunction of the endoplasmic reticulum protein processing pathway. Mol Cell Proteom MCP. 2014;13:2593–603.CrossRef
26.
go back to reference Wiśniewski J, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.PubMedCrossRef Wiśniewski J, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.PubMedCrossRef
27.
go back to reference Elinger D, Gabashvili A, Levin Y. Suspension trapping (S-Trap) is compatible with typical protein extraction buffers and detergents for bottom-up proteomics. J Proteome Res. 2019;18:1441–5.PubMedCrossRef Elinger D, Gabashvili A, Levin Y. Suspension trapping (S-Trap) is compatible with typical protein extraction buffers and detergents for bottom-up proteomics. J Proteome Res. 2019;18:1441–5.PubMedCrossRef
28.
go back to reference Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.PubMedCrossRef Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.PubMedCrossRef
29.
go back to reference Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, Paulovich A, Pomeroy S, Golub T, Lander E, Mesirov J. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, Paulovich A, Pomeroy S, Golub T, Lander E, Mesirov J. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.PubMedPubMedCentralCrossRef
30.
go back to reference Mootha V, Lindgren C, Eriksson K, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.PubMedCrossRef Mootha V, Lindgren C, Eriksson K, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.PubMedCrossRef
31.
go back to reference Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA (New York, NY). 2004;10:1507–17.CrossRef Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA (New York, NY). 2004;10:1507–17.CrossRef
32.
go back to reference Pang K, Jiang R, Zhang W, Yang Z, Li L, Shimozawa M, Tambaro S, Mayer J, Zhang B, Li M, et al. An App knock-in rat model for Alzheimer’s disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res. 2022;32:157–75.PubMedCrossRef Pang K, Jiang R, Zhang W, Yang Z, Li L, Shimozawa M, Tambaro S, Mayer J, Zhang B, Li M, et al. An App knock-in rat model for Alzheimer’s disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res. 2022;32:157–75.PubMedCrossRef
33.
go back to reference Zhang W, Cheng P, Hu W, Yin W, Guo F, Chen A, Huang H. Inhibition of microRNA-384-5p alleviates osteoarthritis through its effects on inhibiting apoptosis of cartilage cells via the NF-κB signaling pathway by targeting SOX9. Cancer Gene Ther. 2018;25:326–38.PubMedCrossRef Zhang W, Cheng P, Hu W, Yin W, Guo F, Chen A, Huang H. Inhibition of microRNA-384-5p alleviates osteoarthritis through its effects on inhibiting apoptosis of cartilage cells via the NF-κB signaling pathway by targeting SOX9. Cancer Gene Ther. 2018;25:326–38.PubMedCrossRef
34.
go back to reference Song R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation. 2022;145:1140–53.PubMedCrossRef Song R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation. 2022;145:1140–53.PubMedCrossRef
35.
go back to reference Bhayadia R, Krowiorz K, Haetscher N, Jammal R, Emmrich S, Obulkasim A, Fiedler J, Schwarzer A, Rouhi A, Heuser M, et al. Endogenous tumor suppressor microRNA-193b: therapeutic and prognostic value in acute myeloid leukemia. J Clin Oncol. 2018;36:1007–16.PubMedCrossRef Bhayadia R, Krowiorz K, Haetscher N, Jammal R, Emmrich S, Obulkasim A, Fiedler J, Schwarzer A, Rouhi A, Heuser M, et al. Endogenous tumor suppressor microRNA-193b: therapeutic and prognostic value in acute myeloid leukemia. J Clin Oncol. 2018;36:1007–16.PubMedCrossRef
36.
go back to reference Zou H, Guo L, Zhang B, Chen S, Wu X, Liu X, Xu X, Li B, Chen S, Xu N, Sun S. Aberrant miR-339-5p/neuronatin signaling causes prodromal neuronal calcium dyshomeostasis in mutant presenilin mice. J Clin Investig. 2022; 132. Zou H, Guo L, Zhang B, Chen S, Wu X, Liu X, Xu X, Li B, Chen S, Xu N, Sun S. Aberrant miR-339-5p/neuronatin signaling causes prodromal neuronal calcium dyshomeostasis in mutant presenilin mice. J Clin Investig. 2022; 132.
37.
go back to reference Johansen M, Joensen S, Restorff M, Stórá T, Christy D, Gustavsson E, Bian J, Guo Y, Farrer M, Petersen M. Polygenic risk of Alzheimer’s disease in the Faroe Islands. Eur J Neurol. 2022. Johansen M, Joensen S, Restorff M, Stórá T, Christy D, Gustavsson E, Bian J, Guo Y, Farrer M, Petersen M. Polygenic risk of Alzheimer’s disease in the Faroe Islands. Eur J Neurol. 2022.
39.
go back to reference Chen G, Chen K, Knox J, Inglis J, Bernard A, Martin S, Justice A, McConlogue L, Games D, Freedman S, Morris R. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature. 2000;408:975–9.PubMedCrossRef Chen G, Chen K, Knox J, Inglis J, Bernard A, Martin S, Justice A, McConlogue L, Games D, Freedman S, Morris R. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature. 2000;408:975–9.PubMedCrossRef
40.
go back to reference Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, Chen B. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer’s disease. Aging Cell. 2021;20: e13380.PubMedPubMedCentral Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, Chen B. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer’s disease. Aging Cell. 2021;20: e13380.PubMedPubMedCentral
41.
go back to reference Busche M, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, Kamath T, Carlson G, Nelken I, Hyman B. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci. 2019;22:57–64.PubMedCrossRef Busche M, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, Kamath T, Carlson G, Nelken I, Hyman B. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci. 2019;22:57–64.PubMedCrossRef
42.
go back to reference Spangenberg E, Lee R, Najafi A, Rice R, Elmore M, Blurton-Jones M, West B, Green K. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain. 2016;139:1265–81.PubMedPubMedCentralCrossRef Spangenberg E, Lee R, Najafi A, Rice R, Elmore M, Blurton-Jones M, West B, Green K. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain. 2016;139:1265–81.PubMedPubMedCentralCrossRef
43.
go back to reference Takahashi N, Nakaoka T, Yamashita N. Profiling of immune-related microRNA expression in human cord blood and adult peripheral blood cells upon proinflammatory stimulation. Eur J Haematol. 2012;88:31–8.PubMedCrossRef Takahashi N, Nakaoka T, Yamashita N. Profiling of immune-related microRNA expression in human cord blood and adult peripheral blood cells upon proinflammatory stimulation. Eur J Haematol. 2012;88:31–8.PubMedCrossRef
44.
go back to reference Jevtic S, Sengar A, Salter M, McLaurin J. The role of the immune system in Alzheimer disease: etiology and treatment. Ageing Res Rev. 2017;40:84–94.PubMedCrossRef Jevtic S, Sengar A, Salter M, McLaurin J. The role of the immune system in Alzheimer disease: etiology and treatment. Ageing Res Rev. 2017;40:84–94.PubMedCrossRef
45.
46.
go back to reference Riepsaame J, van Oudenaren A, den Broeder B, van Ijcken W, Pothof J, Leenen P. MicroRNA-mediated down-regulation of M-CSF receptor contributes to maturation of mouse monocyte-derived dendritic cells. Front Immunol. 2013;4:353.PubMedPubMedCentralCrossRef Riepsaame J, van Oudenaren A, den Broeder B, van Ijcken W, Pothof J, Leenen P. MicroRNA-mediated down-regulation of M-CSF receptor contributes to maturation of mouse monocyte-derived dendritic cells. Front Immunol. 2013;4:353.PubMedPubMedCentralCrossRef
47.
go back to reference Byun J, Oh M, Lee S, Gil J, Mo Y, Ku B, Kim W, Oh K, Lee E, Bae K, et al. The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene. J Biol Chem. 2020;295:13677–90.PubMedPubMedCentralCrossRef Byun J, Oh M, Lee S, Gil J, Mo Y, Ku B, Kim W, Oh K, Lee E, Bae K, et al. The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene. J Biol Chem. 2020;295:13677–90.PubMedPubMedCentralCrossRef
48.
go back to reference Yan H, Zhu X, Xie J, Zhao Y, Liu X. β-amyloid increases neurocan expression through regulating Sox9 in astrocytes: a potential relationship between Sox9 and chondroitin sulfate proteoglycans in Alzheimer’s disease. Brain Res. 2016;1646:377–83.PubMedCrossRef Yan H, Zhu X, Xie J, Zhao Y, Liu X. β-amyloid increases neurocan expression through regulating Sox9 in astrocytes: a potential relationship between Sox9 and chondroitin sulfate proteoglycans in Alzheimer’s disease. Brain Res. 2016;1646:377–83.PubMedCrossRef
49.
go back to reference Ju Hwang C, Choi D, Park M, Hong J. NF-κB as a key mediator of brain inflammation in Alzheimer’s disease. CNS Neurol Disord: Drug Targets. 2019;18:3–10.CrossRef Ju Hwang C, Choi D, Park M, Hong J. NF-κB as a key mediator of brain inflammation in Alzheimer’s disease. CNS Neurol Disord: Drug Targets. 2019;18:3–10.CrossRef
50.
go back to reference Saegusa M, Hashimura M, Suzuki E, Yoshida T, Kuwata T. Transcriptional up-regulation of Sox9 by NF-κB in endometrial carcinoma cells, modulating cell proliferation through alteration in the p14(ARF)/p53/p21(WAF1) pathway. Am J Pathol. 2012;181:684–92.PubMedCrossRef Saegusa M, Hashimura M, Suzuki E, Yoshida T, Kuwata T. Transcriptional up-regulation of Sox9 by NF-κB in endometrial carcinoma cells, modulating cell proliferation through alteration in the p14(ARF)/p53/p21(WAF1) pathway. Am J Pathol. 2012;181:684–92.PubMedCrossRef
Metadata
Title
MicroRNA-22-3p ameliorates Alzheimer’s disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus
Authors
Pengcheng Xia
Jing Chen
Yingchao Liu
Xiaolin Cui
Cuicui Wang
Shuai Zong
Le Wang
Zhiming Lu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02548-1

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue