Skip to main content
Top
Published in: Brain Structure and Function 4/2019

Open Access 01-05-2019 | Alzheimer's Disease | Original Article

Magnetic resonance imaging of noradrenergic neurons

Authors: Takashi Watanabe, Zhengguo Tan, Xiaoqing Wang, Ana Martinez-Hernandez, Jens Frahm

Published in: Brain Structure and Function | Issue 4/2019

Login to get access

Abstract

Noradrenaline is a neurotransmitter involved in general arousal, selective attention, memory, inflammation, and neurodegeneration. The purpose of this work was to delineate noradrenergic neurons in vivo by T1-weighted MRI with magnetization transfer (MT). In the brainstem of human and mice, MRI identified the locus coeruleus, dorsal motor vagus nucleus, and nucleus tractus solitarius. Given (1) the long T1 and low magnetization transfer ratio for the noradrenergic cell groups compared to other gray matter, (2) significant correlation between MT MRI signal intensity and proton density, and (3) no correlation between magnetization transfer ratio (or R1) and iron, copper, or manganese in human brain, the high MRI signal of the noradrenergic neurons must be attributed to abundant water protons interacting with any T1-shortening paramagnetic ions in active cells rather than to specific T1-shortening molecules. The absence of a high MRI signal from the locus coeruleus of Ear2(−/−) mice lacking noradrenergic neurons confirms that cell bodies of noradrenergic neurons are the source of the bright MRI appearance. The observation of this high signal in DBH(−/−) mice, in 3-week-old mice, and in mice under hyperoxia/hypercapnia/hypoxia together with the general absence of neuromelanin (NM) in noradrenergic neurons of young rodents further excludes that it is due to NM, dopamine β-hydroxylase, their binding to paramagnetic ions, blood inflow, or hemoglobin. Instead, these findings indicate a high density of water protons whose T1 is shortened by paramagnetic ions as the relevant source of the high MRI signal. In the brain of APP/PS1/Ear2(−/−) mice, a transgenic model of Alzheimer’s disease, MRI detected noradrenergic neuron loss in the locus coeruleus. Proton magnetic resonance spectroscopy revealed that a 60–75% reduction of noradrenaline is responsible for a reduction of N-acetylaspartate and glutamate in the hippocampus as well as for a shortening of the water proton T2 in the frontal cortex. These results suggest that a concurrent shortage of noradrenaline in Alzheimer’s disease accelerates pathologic processes such as inflammation and neuron loss.
Appendix
Available only for authorised users
Literature
go back to reference Barden H, Levine S (1983) Histochemical observations on rodent brain melanin. Brain Res Bull 10:847–851CrossRefPubMed Barden H, Levine S (1983) Histochemical observations on rodent brain melanin. Brain Res Bull 10:847–851CrossRefPubMed
go back to reference Berridge CW, Waterhouse BD (2003) The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84CrossRefPubMed Berridge CW, Waterhouse BD (2003) The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84CrossRefPubMed
go back to reference Blumberg WE, Goldstein M, Lauber E, Peisach J (1965) Magnetic resonance studies on the mechanism of the enzymic β-hydroxylation of 3, 4-dihydroxyphenylethylamine. Biochim Biophys Acta 99:187–190CrossRefPubMed Blumberg WE, Goldstein M, Lauber E, Peisach J (1965) Magnetic resonance studies on the mechanism of the enzymic β-hydroxylation of 3, 4-dihydroxyphenylethylamine. Biochim Biophys Acta 99:187–190CrossRefPubMed
go back to reference Burton DR, Forsen S, Karlstrom G, Dwek RA (1979) Proton relaxation enhancement (PRE) in biochemistry: a critical survey. Prog Nucl Magn Reson Spectrosc 13:1–45CrossRef Burton DR, Forsen S, Karlstrom G, Dwek RA (1979) Proton relaxation enhancement (PRE) in biochemistry: a critical survey. Prog Nucl Magn Reson Spectrosc 13:1–45CrossRef
go back to reference Clewett DV, Lee TH, Greening S, Ponzio A, Margalit E, Mather M (2016) Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging 37:117–126CrossRefPubMed Clewett DV, Lee TH, Greening S, Ponzio A, Margalit E, Mather M (2016) Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging 37:117–126CrossRefPubMed
go back to reference Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232:1–55 Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232:1–55
go back to reference Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR (2013) Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R 2*-imaging at ultra-high magnetic field strength. Neuroimage 65:299–314CrossRefPubMed Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR (2013) Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R 2*-imaging at ultra-high magnetic field strength. Neuroimage 65:299–314CrossRefPubMed
go back to reference DeMattei M, Levi AC, Fariello RG (1986) Neuromelanic pigment in substantia nigra neurons of rats and dogs. Neurosci Lett 72:37–42CrossRefPubMed DeMattei M, Levi AC, Fariello RG (1986) Neuromelanic pigment in substantia nigra neurons of rats and dogs. Neurosci Lett 72:37–42CrossRefPubMed
go back to reference Duarte JMN, Do KQ, Gruetter R (2014) Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 35:1660–1668CrossRefPubMed Duarte JMN, Do KQ, Gruetter R (2014) Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 35:1660–1668CrossRefPubMed
go back to reference Duflou H, Maenhaut W, De Reuck J (1989) Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res 14:1099–1112CrossRefPubMed Duflou H, Maenhaut W, De Reuck J (1989) Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res 14:1099–1112CrossRefPubMed
go back to reference Eisinger J, Shulman RG, Blumberg WE (1961) Relaxation enhancement by paramagnetic ion binding in deoxyribonucleic acid solutions. Nature 192:963–964CrossRefPubMed Eisinger J, Shulman RG, Blumberg WE (1961) Relaxation enhancement by paramagnetic ion binding in deoxyribonucleic acid solutions. Nature 192:963–964CrossRefPubMed
go back to reference Frahm J, Merboldt KD, Hänicke W, Kleinschmidt A, Boecker H (1994) Brain or vein—oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53CrossRefPubMed Frahm J, Merboldt KD, Hänicke W, Kleinschmidt A, Boecker H (1994) Brain or vein—oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7:45–53CrossRefPubMed
go back to reference Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45:71–79CrossRefPubMed Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45:71–79CrossRefPubMed
go back to reference Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed
go back to reference Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP, Stoll M, Schultze J, Weinshenker D, Heneka MT (2013) Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 73:454–463CrossRefPubMed Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP, Stoll M, Schultze J, Weinshenker D, Heneka MT (2013) Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 73:454–463CrossRefPubMed
go back to reference Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405CrossRefPubMedPubMedCentral Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405CrossRefPubMedPubMedCentral
go back to reference Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64CrossRef Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64CrossRef
go back to reference Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17:157–165CrossRefPubMed Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17:157–165CrossRefPubMed
go back to reference Koenig SH, Brown RD, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 14:482–495CrossRefPubMed Koenig SH, Brown RD, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 14:482–495CrossRefPubMed
go back to reference Kummer MP, Hammerschmidt T, Martinez A, Terwel D, Eichele G, Witten A, Figura S, Stoll M, Schwartz S, Pape HC, Schultze JL, Weinshenker D, Heneka MT (2014) Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J Neurosci 34:8845–8854CrossRefPubMedPubMedCentral Kummer MP, Hammerschmidt T, Martinez A, Terwel D, Eichele G, Witten A, Figura S, Stoll M, Schwartz S, Pape HC, Schultze JL, Weinshenker D, Heneka MT (2014) Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J Neurosci 34:8845–8854CrossRefPubMedPubMedCentral
go back to reference Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics 2:596–608CrossRefPubMed Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics 2:596–608CrossRefPubMed
go back to reference Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1:129–169CrossRefPubMed Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1:129–169CrossRefPubMed
go back to reference Priovoulos N, Jacobs HI, Ivanov D, Uludağ K, Verhey FR, Poser BA (2018) High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3 T and 7 T. Neuroimage 168:427–436CrossRefPubMed Priovoulos N, Jacobs HI, Ivanov D, Uludağ K, Verhey FR, Poser BA (2018) High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3 T and 7 T. Neuroimage 168:427–436CrossRefPubMed
go back to reference Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679CrossRefPubMed
go back to reference Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549CrossRefPubMed Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549CrossRefPubMed
go back to reference Romeo S, Viaggi C, Di Camillo D, Willis AW, Lozzi L, Rocchi C et al (2013) Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson’s disease epidemiology. Sci Rep 3:1395CrossRefPubMedPubMedCentral Romeo S, Viaggi C, Di Camillo D, Willis AW, Lozzi L, Rocchi C et al (2013) Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson’s disease epidemiology. Sci Rep 3:1395CrossRefPubMedPubMedCentral
go back to reference Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17:1215–1218CrossRefPubMed Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17:1215–1218CrossRefPubMed
go back to reference Schulz H, Johner C, Eder G, Ziesenis A, Reitmeier P, Heyder J, Balling R (2002) Respiratory mechanics in mice: strain and sex specific differences. Acta Physiol Scand 174(4):367–375CrossRefPubMed Schulz H, Johner C, Eder G, Ziesenis A, Reitmeier P, Heyder J, Balling R (2002) Respiratory mechanics in mice: strain and sex specific differences. Acta Physiol Scand 174(4):367–375CrossRefPubMed
go back to reference Shonk TK, Moats RA, Gifford P, Michaelis T, Mandigo JC, Izumi J, Ross BD (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72CrossRefPubMed Shonk TK, Moats RA, Gifford P, Michaelis T, Mandigo JC, Izumi J, Ross BD (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72CrossRefPubMed
go back to reference Tammer R, Boretius S, Michaelis T, Pucher-Diehl A (2007) European patent no. 2,174,154, US patent no. 8,334,698 B2 Tammer R, Boretius S, Michaelis T, Pucher-Diehl A (2007) European patent no. 2,174,154, US patent no. 8,334,698 B2
go back to reference Tan Z (2016) Advances in real-time phase-contrast flow MRI and multi-echo radial FLASH. Dissertation. University of Göttingen, pp 73–76 Tan Z (2016) Advances in real-time phase-contrast flow MRI and multi-echo radial FLASH. Dissertation. University of Göttingen, pp 73–76
go back to reference Thomas DL, De Vita E, Roberts S, Turner R, Yousry TA, Ordidge RJ (2004) High-resolution fast spin echo imaging of the human brain at 4.7 T: implementation and sequence characteristics. Magn Reson Med 51:1254–1264CrossRefPubMedPubMedCentral Thomas DL, De Vita E, Roberts S, Turner R, Yousry TA, Ordidge RJ (2004) High-resolution fast spin echo imaging of the human brain at 4.7 T: implementation and sequence characteristics. Magn Reson Med 51:1254–1264CrossRefPubMedPubMedCentral
go back to reference Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi LT et al (2017) Contrast mechanisms associated with neuromelanin-MRI. Mag Reson Med 78:1790–1800CrossRef Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi LT et al (2017) Contrast mechanisms associated with neuromelanin-MRI. Mag Reson Med 78:1790–1800CrossRef
go back to reference Voogd J. Mesencephalon. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C. The central nervous system of vertebrates, vol 3. Springer, Berlin, 1998, p 1720 Voogd J. Mesencephalon. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C. The central nervous system of vertebrates, vol 3. Springer, Berlin, 1998, p 1720
go back to reference Vymazal J, Brooks RA, Bulte JWM, Gordon D, Aisen P (1998) Iron uptake by ferritin: NMR relaxometry studies at low iron loads. J Inorg Biochem 71:153–157CrossRefPubMed Vymazal J, Brooks RA, Bulte JWM, Gordon D, Aisen P (1998) Iron uptake by ferritin: NMR relaxometry studies at low iron loads. J Inorg Biochem 71:153–157CrossRefPubMed
go back to reference Wang X, Roeloffs VB, Merboldt KD, Voit D, Schätz S, Frahm J (2015) Single-shot multi-slice T1 mapping at high spatial resolution—inversion-recovery FLASH with radial undersampling and iterative reconstruction. Open Med Imaging J 9:1–8CrossRef Wang X, Roeloffs VB, Merboldt KD, Voit D, Schätz S, Frahm J (2015) Single-shot multi-slice T1 mapping at high spatial resolution—inversion-recovery FLASH with radial undersampling and iterative reconstruction. Open Med Imaging J 9:1–8CrossRef
go back to reference Wang X, Roeloffs V, Klosowski J, Tan Z, Voit D, Uecker M, Frahm J (2018) Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH. Magn Reson Med 79:730–740CrossRefPubMed Wang X, Roeloffs V, Klosowski J, Tan Z, Voit D, Uecker M, Frahm J (2018) Model-based T1 mapping with sparsity constraints using single-shot inversion-recovery radial FLASH. Magn Reson Med 79:730–740CrossRefPubMed
go back to reference Wansapura JP, Holland SK, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3.0 T. J Magn Reson Imaging 9:531–538CrossRefPubMed Wansapura JP, Holland SK, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3.0 T. J Magn Reson Imaging 9:531–538CrossRefPubMed
go back to reference Warnecke M, Oster H, Revelli JP, Alvarez-Bolado G, Eichele G (2005) Abnormal development of the locus coeruleus in Ear2 (Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. Genes Dev 19:614–625CrossRefPubMedPubMedCentral Warnecke M, Oster H, Revelli JP, Alvarez-Bolado G, Eichele G (2005) Abnormal development of the locus coeruleus in Ear2 (Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. Genes Dev 19:614–625CrossRefPubMedPubMedCentral
go back to reference Watanabe T, Radulovic J, Spiess J, Natt O, Boretius S, Frahm J, Michaelis T (2004) In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2. Neuroimage 22:860–867CrossRefPubMed Watanabe T, Radulovic J, Spiess J, Natt O, Boretius S, Frahm J, Michaelis T (2004) In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2. Neuroimage 22:860–867CrossRefPubMed
go back to reference Watanabe T, Frahm J, Michaelis T (2012) Myelin mapping in the central nervous system of living mice using contrast-enhanced magnetization transfer MRI. Neuroimage 63:812–817CrossRefPubMed Watanabe T, Frahm J, Michaelis T (2012) Myelin mapping in the central nervous system of living mice using contrast-enhanced magnetization transfer MRI. Neuroimage 63:812–817CrossRefPubMed
go back to reference Watanabe T, Frahm J, Michaelis T (2016a) Amide proton signals as pH indicator for in vivo MRS and MRI of the brain—responses to hypercapnia and hypothermia. Neuroimage 133:390–398CrossRefPubMed Watanabe T, Frahm J, Michaelis T (2016a) Amide proton signals as pH indicator for in vivo MRS and MRI of the brain—responses to hypercapnia and hypothermia. Neuroimage 133:390–398CrossRefPubMed
go back to reference Watanabe T, Frahm J, Michaelis T (2016b) In vivo brain MR imaging at subnanoliter resolution: contrast and histology. Mag. Reson Med Sci 15:11–25CrossRef Watanabe T, Frahm J, Michaelis T (2016b) In vivo brain MR imaging at subnanoliter resolution: contrast and histology. Mag. Reson Med Sci 15:11–25CrossRef
go back to reference Wood JH (1982) Physiological neurochemistry of cerebrospinal fluid. In: Lajtha A (ed) Handbook of neurochemistry: chemical and cellular architecture. Plenum Press, New York, pp 415–419CrossRef Wood JH (1982) Physiological neurochemistry of cerebrospinal fluid. In: Lajtha A (ed) Handbook of neurochemistry: chemical and cellular architecture. Plenum Press, New York, pp 415–419CrossRef
go back to reference Yao B, Li TQ, van Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266CrossRefPubMed Yao B, Li TQ, van Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266CrossRefPubMed
go back to reference Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin K, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848CrossRefPubMed Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin K, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848CrossRefPubMed
go back to reference Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D et al (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119CrossRefPubMed Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D et al (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119CrossRefPubMed
Metadata
Title
Magnetic resonance imaging of noradrenergic neurons
Authors
Takashi Watanabe
Zhengguo Tan
Xiaoqing Wang
Ana Martinez-Hernandez
Jens Frahm
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01858-0

Other articles of this Issue 4/2019

Brain Structure and Function 4/2019 Go to the issue