Skip to main content
Top

25-04-2024 | Alzheimer's Disease

Intranasal delivery of human Wharton’s jelly-derived mesenchymal stem cells alleviates Aβ-induced Alzheimer’s symptoms in rat models by regulating neurotrophic and apoptotic factors

Authors: Ebrahim Eslami, Farshid Ghiyamihoor, Marjan Sadr, Marziyeh Ajdary, Sahar Hakimpour, Rana Mehdizadeh, Ronak Shabani, Mehdi Mehdizadeh

Published in: Neuroscience and Behavioral Physiology

Login to get access

Abstract

Alzheimer's disease (AD) is the most common cause of dementia in adulthood, followed by cognitive and behavioral deficits. Today, mesenchymal stem cell (MSC)-based therapy is a suitable therapeutic option to improve regenerative medicine approaches against neurodegenerative disorders, including AD. This study aimed to investigate the effects of human Wharton’s jelly-derived MSCs (WJ-MSCs) on AD-like rat models (rats treated with amyloid beta 1-42 (Aβ1-42)) by evaluating the expression of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), as well as the expression of apoptotic factors such as B-cell lymphoma 2 (BCL2, an anti-apoptotic factor to inhibit apoptosis) and BCL2-associated X protein (BAX, a pro-apoptotic factor to regulate apoptosis). After treatment of AD rat models with WJ-MSCs, behavioral tests (i.e., passive avoidance and Morris water maze) showed cognitive improvements, and amelioration of cells in the CA1 area of the hippocampus was detected by cresyl violet staining. Additionally, real-time polymerase chain reaction (RT-PCR) of the hippocampus indicated an increase in the expression level of the BDNF, NGF, and BCL2 genes and a decrease in the expression level of the BAX gene. Overall, the WJ-MSCs improved the cognitive function in AD rat models by increasing the neurotrophic and anti-apoptotic factors and decreasing the pro-apoptotic factor.

Graphical Abstract

This graphical abstract depicts the process of isolating mesenchymal stem cells (MSCs) from human Wharton’s jelly (WJ) and their subsequent use in an Alzheimer’s disease (AD) rat model. The left side of the image illustrates the steps involved in isolating MSCs from WJ. The right side of the image shows how AD rat models are generated under stereotaxic injection of Aβ. In the middle, intranasally administration of MSCs is shown and then how their effects are evaluated using behavioral tests, nissl staining, and RT-qPCR.
Appendix
Available only for authorised users
Literature
go back to reference Ahmed, N. E.-M. B., Murakami, M., Hirose, Y., & Nakashima, M. (2016). Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: an in vitro study. Stem Cells International, 2016.CrossRef Ahmed, N. E.-M. B., Murakami, M., Hirose, Y., & Nakashima, M. (2016). Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: an in vitro study. Stem Cells International, 2016.CrossRef
go back to reference Aisen, P. S., Cummings, J., & Schneider, L. S. (2012). Symptomatic and nonamyloid/tau based pharmacologic treatment for Alzheimer disease. Cold Spring Harbor perspectives in medicine, 2(3), a006395.CrossRefPubMedPubMedCentral Aisen, P. S., Cummings, J., & Schneider, L. S. (2012). Symptomatic and nonamyloid/tau based pharmacologic treatment for Alzheimer disease. Cold Spring Harbor perspectives in medicine, 2(3), a006395.CrossRefPubMedPubMedCentral
go back to reference Alipour, M., Nabavi, S. M., Arab, L., Vosough, M., Pakdaman, H., Ehsani, E., & Shahpasand, K. (2019). Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Molecular biology reports, 46(1), 1425-1446.CrossRefPubMed Alipour, M., Nabavi, S. M., Arab, L., Vosough, M., Pakdaman, H., Ehsani, E., & Shahpasand, K. (2019). Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Molecular biology reports, 46(1), 1425-1446.CrossRefPubMed
go back to reference Balashova, A., Pershin, V., Zaborskaya, O., Tkachenko, N., Mironov, A., Guryev, E., … Mukhina, I. (2019). Enzymatic digestion of hyaluronan-based brain extracellular matrix in vivo can induce seizures in neonatal mice. Frontiers in neuroscience, 13, 1033. Balashova, A., Pershin, V., Zaborskaya, O., Tkachenko, N., Mironov, A., Guryev, E., … Mukhina, I. (2019). Enzymatic digestion of hyaluronan-based brain extracellular matrix in vivo can induce seizures in neonatal mice. Frontiers in neuroscience, 13, 1033.
go back to reference Barati, E., Asl, S. S., Jamshidian, M., & Shahidi, S. (2016). Effect of Borage on hipocampal TNF-α protein and gene in the Amyloid β-Peptide (25–35)-Induced of Alzheimer model in rat. Biosciences Biotechnology Research Asia, 13(1), 37-42.CrossRef Barati, E., Asl, S. S., Jamshidian, M., & Shahidi, S. (2016). Effect of Borage on hipocampal TNF-α protein and gene in the Amyloid β-Peptide (25–35)-Induced of Alzheimer model in rat. Biosciences Biotechnology Research Asia, 13(1), 37-42.CrossRef
go back to reference Beigi Boroujeni, F., Pasbakhsh, P., Mortezaee, K., Pirhajati, V., Alizadeh, R., Aryanpour, R., … Ragerdi Kashani, I. (2020). Intranasal delivery of SDF‐1α‐preconditioned bone marrow mesenchymal cells improves remyelination in the cuprizone‐induced mouse model of multiple sclerosis. Cell biology international, 44(2), 499-511. Beigi Boroujeni, F., Pasbakhsh, P., Mortezaee, K., Pirhajati, V., Alizadeh, R., Aryanpour, R., … Ragerdi Kashani, I. (2020). Intranasal delivery of SDF‐1α‐preconditioned bone marrow mesenchymal cells improves remyelination in the cuprizone‐induced mouse model of multiple sclerosis. Cell biology international, 44(2), 499-511.
go back to reference Blondiaux, A., Jia, S., Annamneedi, A., Çalışkan, G., Nebel, J., Montenegro-Venegas, C., … Stork, O. (2023). Linking epileptic phenotypes and neural extracellular matrix remodeling signatures in mouse models of epilepsy. Neurobiology of disease, 188, 106324. Blondiaux, A., Jia, S., Annamneedi, A., Çalışkan, G., Nebel, J., Montenegro-Venegas, C., … Stork, O. (2023). Linking epileptic phenotypes and neural extracellular matrix remodeling signatures in mouse models of epilepsy. Neurobiology of disease, 188, 106324.
go back to reference Blurton-Jones, M., Kitazawa, M., Martinez-Coria, H., Castello, N. A., Müller, F.-J., Loring, J. F., … LaFerla, F. M. (2009). Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences, 106(32), 13594-13599. Blurton-Jones, M., Kitazawa, M., Martinez-Coria, H., Castello, N. A., Müller, F.-J., Loring, J. F., … LaFerla, F. M. (2009). Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences, 106(32), 13594-13599.
go back to reference Chen, S.-D., Wu, C.-L., Hwang, W.-C., & Yang, D.-I. (2017). More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. International journal of molecular sciences, 18(3), 545.CrossRefPubMedPubMedCentral Chen, S.-D., Wu, C.-L., Hwang, W.-C., & Yang, D.-I. (2017). More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. International journal of molecular sciences, 18(3), 545.CrossRefPubMedPubMedCentral
go back to reference Choi, J. M., Park, H. S., He, M. T., Kim, Y. S., Kim, H. Y., Lee, A. Y., & Cho, E. J. (2022). Membrane-Free Stem Cells and Pyridoxal 5′-Phosphate Synergistically Enhance Cognitive Function in Alzheimer’s Disease Mouse Model. Antioxidants, 11(3), 601.CrossRefPubMedPubMedCentral Choi, J. M., Park, H. S., He, M. T., Kim, Y. S., Kim, H. Y., Lee, A. Y., & Cho, E. J. (2022). Membrane-Free Stem Cells and Pyridoxal 5′-Phosphate Synergistically Enhance Cognitive Function in Alzheimer’s Disease Mouse Model. Antioxidants, 11(3), 601.CrossRefPubMedPubMedCentral
go back to reference Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Buadze, M., Geisler, J., Klopfer, T., … Ayturan, M. (2009). Intranasal delivery of cells to the brain. European journal of cell biology, 88(6), 315-324. Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Buadze, M., Geisler, J., Klopfer, T., … Ayturan, M. (2009). Intranasal delivery of cells to the brain. European journal of cell biology, 88(6), 315-324.
go back to reference Donders, R., Bogie, J. F., Ravanidis, S., Gervois, P., Vanheusden, M., Marée, R., … Gijbels, K. (2018). Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem cells and development, 27(2), 65-84. Donders, R., Bogie, J. F., Ravanidis, S., Gervois, P., Vanheusden, M., Marée, R., … Gijbels, K. (2018). Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells. Stem cells and development, 27(2), 65-84.
go back to reference Dragunow, Μ., MacGibbon, G., Lawlor, P., Butterworth, N., Connor, B., Henderson, C., … Faull, R. (1997). Apoptosis, neurotrophic factors and neurodegeneration. Reviews in the Neurosciences, 8(3-4), 223-265. Dragunow, Μ., MacGibbon, G., Lawlor, P., Butterworth, N., Connor, B., Henderson, C., … Faull, R. (1997). Apoptosis, neurotrophic factors and neurodegeneration. Reviews in the Neurosciences, 8(3-4), 223-265.
go back to reference Faghani, M., Ejlali, F., Sharifi, Z. N., Molladoost, H., & Movassaghi, S. (2016). The Neuroprotective Effect of Atorvastatin on Apoptosis of Hippocampus Following Transient Global Ischemia/Reperfusion. Galen Medical Journal, 5(2), 82-89. Faghani, M., Ejlali, F., Sharifi, Z. N., Molladoost, H., & Movassaghi, S. (2016). The Neuroprotective Effect of Atorvastatin on Apoptosis of Hippocampus Following Transient Global Ischemia/Reperfusion. Galen Medical Journal, 5(2), 82-89.
go back to reference Girotra, P., Behl, T., Sehgal, A., Singh, S., & Bungau, S. (2022). Investigation of the molecular Role of brain-derived neurotrophic factor in Alzheimer’s disease. Journal of Molecular Neuroscience, 72(2), 173-186.CrossRefPubMed Girotra, P., Behl, T., Sehgal, A., Singh, S., & Bungau, S. (2022). Investigation of the molecular Role of brain-derived neurotrophic factor in Alzheimer’s disease. Journal of Molecular Neuroscience, 72(2), 173-186.CrossRefPubMed
go back to reference Hour, F. Q., Moghadam, A. J., Shakeri-Zadeh, A., Bakhtiyari, M., Shabani, R., & Mehdizadeh, M. (2020). Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton's jelly in Alzheimer's rat models. Journal of Controlled Release. Hour, F. Q., Moghadam, A. J., Shakeri-Zadeh, A., Bakhtiyari, M., Shabani, R., & Mehdizadeh, M. (2020). Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton's jelly in Alzheimer's rat models. Journal of Controlled Release.
go back to reference Hsieh, J.-Y., Wang, H.-W., Chang, S.-J., Liao, K.-H., Lee, I.-H., Lin, W.-S., … Cheng, S.-M. (2013). Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PloS one, 8(8). Hsieh, J.-Y., Wang, H.-W., Chang, S.-J., Liao, K.-H., Lee, I.-H., Lin, W.-S., … Cheng, S.-M. (2013). Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PloS one, 8(8).
go back to reference Jahanshahi, M., Shabani, R., Nikmahzar, E., & Babakordi, F. (2014). Female rat hippocampal cell density after conditioned place preference. Folia Biologica (Czech Republic), 60(1), 47-51. Jahanshahi, M., Shabani, R., Nikmahzar, E., & Babakordi, F. (2014). Female rat hippocampal cell density after conditioned place preference. Folia Biologica (Czech Republic), 60(1), 47-51.
go back to reference Jiao, S., Shen, L., Zhu, C., Bu, X., Liu, Y., Liu, C., … Walker, D. (2016). Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Translational psychiatry, 6(10), e907-e907. Jiao, S., Shen, L., Zhu, C., Bu, X., Liu, Y., Liu, C., … Walker, D. (2016). Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Translational psychiatry, 6(10), e907-e907.
go back to reference Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J. A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative medicine, 5(6), 933-946.CrossRefPubMed Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J. A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative medicine, 5(6), 933-946.CrossRefPubMed
go back to reference Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Mesenchymal stromal cells: biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis research & therapy, 9(1), 204.CrossRef Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Mesenchymal stromal cells: biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis research & therapy, 9(1), 204.CrossRef
go back to reference Lee, I.-S., Jung, K., Kim, I.-S., Lee, H., Kim, M., Yun, S., … Park, K. I. (2015). Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Molecular neurodegeneration, 10(1), 38. Lee, I.-S., Jung, K., Kim, I.-S., Lee, H., Kim, M., Yun, S., … Park, K. I. (2015). Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Molecular neurodegeneration, 10(1), 38.
go back to reference Lee, N. K., Park, S. E., Kwon, S. J., Shim, S., Byeon, Y., Kim, J.-H., … Chang, J. W. (2017). Agouti related peptide secreted via human mesenchymal stem cells upregulates proteasome activity in an Alzheimer’s disease model. Scientific reports, 7(1), 1-9. Lee, N. K., Park, S. E., Kwon, S. J., Shim, S., Byeon, Y., Kim, J.-H., … Chang, J. W. (2017). Agouti related peptide secreted via human mesenchymal stem cells upregulates proteasome activity in an Alzheimer’s disease model. Scientific reports, 7(1), 1-9.
go back to reference Lo Furno, D., Mannino, G., & Giuffrida, R. (2018). Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. Journal of cellular physiology, 233(5), 3982-3999.CrossRefPubMed Lo Furno, D., Mannino, G., & Giuffrida, R. (2018). Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. Journal of cellular physiology, 233(5), 3982-3999.CrossRefPubMed
go back to reference Madadi, S., & Mehdizaded, M. (2014). Alzheimer diseases. Avicenna Journal of Neuro Psych Physiology, 1(2). Madadi, S., & Mehdizaded, M. (2014). Alzheimer diseases. Avicenna Journal of Neuro Psych Physiology, 1(2).
go back to reference Mattson, M. P. (2000). Apoptosis in neurodegenerative disorders. Nature reviews Molecular cell biology, 1(2), 120-130.CrossRefPubMed Mattson, M. P. (2000). Apoptosis in neurodegenerative disorders. Nature reviews Molecular cell biology, 1(2), 120-130.CrossRefPubMed
go back to reference Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in neurosciences, 27(10), 589-594.CrossRefPubMed Mattson, M. P., Maudsley, S., & Martin, B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in neurosciences, 27(10), 589-594.CrossRefPubMed
go back to reference Mehdizadeh, M., Dabaghian, F. H., Shojaee, A., Molavi, N., Taslimi, Z., Shabani, R., & Asl, S. S. (2017). Protective effects of cyperus rotundus extract on amyloid β-peptide (1-40)-induced memory impairment in male rats: a behavioral study. Basic and clinical neuroscience, 8(3), 249.CrossRefPubMedPubMedCentral Mehdizadeh, M., Dabaghian, F. H., Shojaee, A., Molavi, N., Taslimi, Z., Shabani, R., & Asl, S. S. (2017). Protective effects of cyperus rotundus extract on amyloid β-peptide (1-40)-induced memory impairment in male rats: a behavioral study. Basic and clinical neuroscience, 8(3), 249.CrossRefPubMedPubMedCentral
go back to reference Mendoza-Naranjo, A., Contreras-Vallejos, E., Henriquez, D. R., Otth, C., Bamburg, J. R., Maccioni, R. B., & Gonzalez-Billault, C. (2012). Fibrillar amyloid-β 1-42 modifies actin organization affecting the cofilin phosphorylation state: a role for Rac1/cdc42 effector proteins and the slingshot phosphatase. Journal of Alzheimer's disease, 29(1), 63-77.CrossRefPubMed Mendoza-Naranjo, A., Contreras-Vallejos, E., Henriquez, D. R., Otth, C., Bamburg, J. R., Maccioni, R. B., & Gonzalez-Billault, C. (2012). Fibrillar amyloid-β 1-42 modifies actin organization affecting the cofilin phosphorylation state: a role for Rac1/cdc42 effector proteins and the slingshot phosphatase. Journal of Alzheimer's disease, 29(1), 63-77.CrossRefPubMed
go back to reference Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods, 11(1), 47-60.CrossRefPubMed Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods, 11(1), 47-60.CrossRefPubMed
go back to reference Morris, R. G., Garrud, P., Rawlins, J. a., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.CrossRefPubMed Morris, R. G., Garrud, P., Rawlins, J. a., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.CrossRefPubMed
go back to reference Mungmunpuntipantip, R., & Wiwanitkit, V. (2022). Brain-derived neurotrophic factor and its clinical applications. Medical Journal of Dr. DY Patil University, 15(5), 619-628. Mungmunpuntipantip, R., & Wiwanitkit, V. (2022). Brain-derived neurotrophic factor and its clinical applications. Medical Journal of Dr. DY Patil University, 15(5), 619-628.
go back to reference Pang, S., Li, S., Cheng, H., Luo, Z., Qi, X., Guan, F., … Gao, X. (2023). Discovery of an evodiamine derivative for PI3K/AKT/GSK3β pathway activation and AD pathology improvement in mouse models. Frontiers in Molecular Neuroscience, 15, 1025066. Pang, S., Li, S., Cheng, H., Luo, Z., Qi, X., Guan, F., … Gao, X. (2023). Discovery of an evodiamine derivative for PI3K/AKT/GSK3β pathway activation and AD pathology improvement in mouse models. Frontiers in Molecular Neuroscience, 15, 1025066.
go back to reference Park, S. E., Lee, N. K., Na, D. L., Chang, J. W., & Chang, J. W. (2018). Optimal mesenchymal stem cell delivery routes to enhance neurogenesis for the treatment of Alzheimer’s disease. Histology and histopathology: cellular and molecular biology, 33(6), 533-541.PubMed Park, S. E., Lee, N. K., Na, D. L., Chang, J. W., & Chang, J. W. (2018). Optimal mesenchymal stem cell delivery routes to enhance neurogenesis for the treatment of Alzheimer’s disease. Histology and histopathology: cellular and molecular biology, 33(6), 533-541.PubMed
go back to reference Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P. A., … Levine, B. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. The Journal of clinical investigation, 118(6), 2190-2199. Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P. A., … Levine, B. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. The Journal of clinical investigation, 118(6), 2190-2199.
go back to reference Qin, C., Bai, L., Li, Y., & Wang, K. (2022a). The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer’s disease: crosstalk between autophagy and apoptosis. Stem cell research & therapy, 13(1), 1-13.CrossRef Qin, C., Bai, L., Li, Y., & Wang, K. (2022a). The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer’s disease: crosstalk between autophagy and apoptosis. Stem cell research & therapy, 13(1), 1-13.CrossRef
go back to reference Qin, C., Wang, K., Zhang, L., & Bai, L. (2022b). Stem cell therapy for Alzheimer’s disease: An overview of experimental models and reality. Animal models and experimental medicine, 5(1), 15-26.CrossRefPubMedPubMedCentral Qin, C., Wang, K., Zhang, L., & Bai, L. (2022b). Stem cell therapy for Alzheimer’s disease: An overview of experimental models and reality. Animal models and experimental medicine, 5(1), 15-26.CrossRefPubMedPubMedCentral
go back to reference Qiyami Hour, F., Shabani, R., Ashtrai, B., Moinzadeh, A., & Mehdizadeh, M. Labelling of human Wharton's jelly‐derived mesenchymal stem cells with gold nanorods by biomimicry method. Cell Biochemistry and Function. Qiyami Hour, F., Shabani, R., Ashtrai, B., Moinzadeh, A., & Mehdizadeh, M. Labelling of human Wharton's jelly‐derived mesenchymal stem cells with gold nanorods by biomimicry method. Cell Biochemistry and Function.
go back to reference Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer's disease, 42(s3), S125-S152.CrossRefPubMed Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer's disease, 42(s3), S125-S152.CrossRefPubMed
go back to reference Ranjbaran, H., Abediankenari, S., Mohammadi, M., Jafari, N., Khalilian, A., Rahmani, Z., … Ebrahimi, P. (2018). Wharton's jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Medica Iranica, 28-33. Ranjbaran, H., Abediankenari, S., Mohammadi, M., Jafari, N., Khalilian, A., Rahmani, Z., … Ebrahimi, P. (2018). Wharton's jelly derived-mesenchymal stem cells: Isolation and characterization. Acta Medica Iranica, 28-33.
go back to reference Ribeiro, C. A., Fraga, J. S., Grãos, M., Neves, N. M., Reis, R. L., Gimble, J. M., … Salgado, A. J. (2012). The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem cell research & therapy, 3(3), 18. Ribeiro, C. A., Fraga, J. S., Grãos, M., Neves, N. M., Reis, R. L., Gimble, J. M., … Salgado, A. J. (2012). The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem cell research & therapy, 3(3), 18.
go back to reference Salehi, M. S., Jurek, B., Karimi-Haghighi, S., Nezhad, N. J., Mousavi, S. M., Hooshmandi, E., … Miyan, J. A. (2022). Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Reviews in the Neurosciences. Salehi, M. S., Jurek, B., Karimi-Haghighi, S., Nezhad, N. J., Mousavi, S. M., Hooshmandi, E., … Miyan, J. A. (2022). Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Reviews in the Neurosciences.
go back to reference Sampaio, T. B., Savall, A. S., Gutierrez, M. E. Z., & Pinton, S. (2017). Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural regeneration research, 12(4), 549.CrossRefPubMedPubMedCentral Sampaio, T. B., Savall, A. S., Gutierrez, M. E. Z., & Pinton, S. (2017). Neurotrophic factors in Alzheimer's and Parkinson's diseases: implications for pathogenesis and therapy. Neural regeneration research, 12(4), 549.CrossRefPubMedPubMedCentral
go back to reference Shaabani, R., Jahanshahi, M., Nowrouzian, M., Sadeghi, Y., & Azami, N. (2011). Effect of morphine based CPP on the hippocampal astrocytes of male Wistar rats. Asian Journal of Cell Biology, 6(3), 89-96.CrossRef Shaabani, R., Jahanshahi, M., Nowrouzian, M., Sadeghi, Y., & Azami, N. (2011). Effect of morphine based CPP on the hippocampal astrocytes of male Wistar rats. Asian Journal of Cell Biology, 6(3), 89-96.CrossRef
go back to reference Shahror, R. A., Wu, C.-C., Chiang, Y.-H., & Chen, K.-Y. (2019). Tracking Superparamagnetic Iron Oxide-labeled Mesenchymal Stem Cells using MRI after Intranasal Delivery in a Traumatic Brain Injury Murine Model. JoVE (Journal of Visualized Experiments)(153), e60450. Shahror, R. A., Wu, C.-C., Chiang, Y.-H., & Chen, K.-Y. (2019). Tracking Superparamagnetic Iron Oxide-labeled Mesenchymal Stem Cells using MRI after Intranasal Delivery in a Traumatic Brain Injury Murine Model. JoVE (Journal of Visualized Experiments)(153), e60450.
go back to reference Sharma, V. K., Singh, T. G., Singh, S., Garg, N., & Dhiman, S. (2021). Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochemical Research, 46(12), 3103-3122.CrossRefPubMed Sharma, V. K., Singh, T. G., Singh, S., Garg, N., & Dhiman, S. (2021). Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochemical Research, 46(12), 3103-3122.CrossRefPubMed
go back to reference Simorgh, S., Alizadeh, R., Shabani, R., Karimzadeh, F., Seidkhani, E., Majidpoor, J., … Kasbiyan, H. (2021a). Olfactory mucosa stem cells delivery via nasal route: a simple way for the treatment of Parkinson disease. Neurotoxicity Research, 39(3), 598-608. Simorgh, S., Alizadeh, R., Shabani, R., Karimzadeh, F., Seidkhani, E., Majidpoor, J., … Kasbiyan, H. (2021a). Olfactory mucosa stem cells delivery via nasal route: a simple way for the treatment of Parkinson disease. Neurotoxicity Research, 39(3), 598-608.
go back to reference Simorgh, S., Bagher, Z., Farhadi, M., Kamrava, S. K., Boroujeni, M. E., Namjoo, Z., … Alizadeh, R. (2021b). Magnetic targeting of human olfactory mucosa stem cells following intranasal administration: a novel approach to Parkinson’s disease treatment. Molecular Neurobiology, 58, 3835-3847. Simorgh, S., Bagher, Z., Farhadi, M., Kamrava, S. K., Boroujeni, M. E., Namjoo, Z., … Alizadeh, R. (2021b). Magnetic targeting of human olfactory mucosa stem cells following intranasal administration: a novel approach to Parkinson’s disease treatment. Molecular Neurobiology, 58, 3835-3847.
go back to reference Tamtaji, O. R., Hosseinzadeh, H., Talaei, S. A., Behnam, M., Firoozeh, S. M. T., Taghizadeh, M., & Alipoor, R. (2017). Protective Effects of Red Onion (Allium cepa) Ethanolic Extract on Learning and Memory Impairments in Animal Models of Diabetes. Galen Medical Journal, 6(3), 249-257.CrossRef Tamtaji, O. R., Hosseinzadeh, H., Talaei, S. A., Behnam, M., Firoozeh, S. M. T., Taghizadeh, M., & Alipoor, R. (2017). Protective Effects of Red Onion (Allium cepa) Ethanolic Extract on Learning and Memory Impairments in Animal Models of Diabetes. Galen Medical Journal, 6(3), 249-257.CrossRef
go back to reference Tang, Y., Han, L., Bai, X., Liang, X., Zhao, J., Huang, F., & Wang, J. (2020). Intranasal Delivery of Bone Marrow Stromal Cells Preconditioned with Fasudil to Treat a Mouse Model of Parkinson’s Disease. Neuropsychiatric Disease and Treatment, 16, 249.CrossRefPubMedPubMedCentral Tang, Y., Han, L., Bai, X., Liang, X., Zhao, J., Huang, F., & Wang, J. (2020). Intranasal Delivery of Bone Marrow Stromal Cells Preconditioned with Fasudil to Treat a Mouse Model of Parkinson’s Disease. Neuropsychiatric Disease and Treatment, 16, 249.CrossRefPubMedPubMedCentral
go back to reference Teixeira, F. G., Carvalho, M. M., Sousa, N., & Salgado, A. J. (2013). Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cellular and Molecular Life Sciences, 70(20), 3871-3882.CrossRefPubMed Teixeira, F. G., Carvalho, M. M., Sousa, N., & Salgado, A. J. (2013). Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cellular and Molecular Life Sciences, 70(20), 3871-3882.CrossRefPubMed
go back to reference Tuszynski, M. H., Thal, L., Pay, M., Salmon, D. P., Bakay, R., Patel, P., … . Tong, G. (2005). A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature medicine, 11(5), 551-555. Tuszynski, M. H., Thal, L., Pay, M., Salmon, D. P., Bakay, R., Patel, P., … . Tong, G. (2005). A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature medicine, 11(5), 551-555.
go back to reference Vafaee, F., Zarifkar, A., Emamghoreishi, M., Namavar, M. R., Shahpari, M., & Zarifkar, A. H. (2018). Effect of Recombinant Insulin-like Growth Factor-2 Injected into the Hippocampus on Memory Impairment Following Hippocampal Intracerebral Hemorrhage in Rats. Galen Medical Journal, 7, 1353.CrossRef Vafaee, F., Zarifkar, A., Emamghoreishi, M., Namavar, M. R., Shahpari, M., & Zarifkar, A. H. (2018). Effect of Recombinant Insulin-like Growth Factor-2 Injected into the Hippocampus on Memory Impairment Following Hippocampal Intracerebral Hemorrhage in Rats. Galen Medical Journal, 7, 1353.CrossRef
go back to reference van Rijzingen, I. M., Gispen, W. H., & Spruijt, B. M. (1995). Olfactory bulbectomy temporarily impairs Morris maze performance: an ACTH (4–9) analog accellerates return of function. Physiology & behavior, 58(1), 147-152.CrossRef van Rijzingen, I. M., Gispen, W. H., & Spruijt, B. M. (1995). Olfactory bulbectomy temporarily impairs Morris maze performance: an ACTH (4–9) analog accellerates return of function. Physiology & behavior, 58(1), 147-152.CrossRef
go back to reference Wozniak, D. F., Hartman, R. E., Boyle, M. P., Vogt, S. K., Brooks, A. R., Tenkova, T., … Muglia, L. J. (2004). Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiology of disease, 17(3), 403-414. Wozniak, D. F., Hartman, R. E., Boyle, M. P., Vogt, S. K., Brooks, A. R., Tenkova, T., … Muglia, L. J. (2004). Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiology of disease, 17(3), 403-414.
go back to reference Wu, C.-C., Lien, C.-C., Hou, W.-H., Chiang, P.-M., & Tsai, K.-J. (2016). Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Scientific reports, 6(1), 27358.CrossRefPubMedPubMedCentral Wu, C.-C., Lien, C.-C., Hou, W.-H., Chiang, P.-M., & Tsai, K.-J. (2016). Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Scientific reports, 6(1), 27358.CrossRefPubMedPubMedCentral
go back to reference Wu, S., Sasaki, A., Yoshimoto, R., Kawahara, Y., Manabe, T., Kataoka, K., … Yuge, L. (2008). Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology, 75(3), 186-194. Wu, S., Sasaki, A., Yoshimoto, R., Kawahara, Y., Manabe, T., Kataoka, K., … Yuge, L. (2008). Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology, 75(3), 186-194.
go back to reference Yang, H., Liu, Y., Liu, X., Gu, H., Zhang, J., & Sun, C. (2020). Concise Review: The Regulatory Mechanism of Lysine Acetylation in Mesenchymal Stem Cell Differentiation. Stem Cells International, 2020. Yang, H., Liu, Y., Liu, X., Gu, H., Zhang, J., & Sun, C. (2020). Concise Review: The Regulatory Mechanism of Lysine Acetylation in Mesenchymal Stem Cell Differentiation. Stem Cells International, 2020.
go back to reference Yu-Taeger, L., Stricker-Shaver, J., Arnold, K., Bambynek-Dziuk, P., Novati, A., Singer, E., … Riess, O. (2019). Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells, 8(6), 595. Yu-Taeger, L., Stricker-Shaver, J., Arnold, K., Bambynek-Dziuk, P., Novati, A., Singer, E., … Riess, O. (2019). Intranasal administration of mesenchymal stem cells ameliorates the abnormal dopamine transmission system and inflammatory reaction in the R6/2 mouse model of Huntington disease. Cells, 8(6), 595.
Metadata
Title
Intranasal delivery of human Wharton’s jelly-derived mesenchymal stem cells alleviates Aβ-induced Alzheimer’s symptoms in rat models by regulating neurotrophic and apoptotic factors
Authors
Ebrahim Eslami
Farshid Ghiyamihoor
Marjan Sadr
Marziyeh Ajdary
Sahar Hakimpour
Rana Mehdizadeh
Ronak Shabani
Mehdi Mehdizadeh
Publication date
25-04-2024
Publisher
Springer International Publishing
Published in
Neuroscience and Behavioral Physiology
Print ISSN: 0097-0549
Electronic ISSN: 1573-899X
DOI
https://doi.org/10.1007/s11055-024-01582-1