Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

Inhibition of discoidin domain receptor (DDR)-1 with nilotinib alters CSF miRNAs and is associated with reduced inflammation and vascular fibrosis in Alzheimer’s disease

Authors: Max Stevenson, Rency Varghese, Michaeline L. Hebron, Xiaoguang Liu, Nick Ratliff, Amelia Smith, R. Scott Turner, Charbel Moussa

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Discoidin Domain Receptor (DDR)-1 is activated by collagen. Nilotinib is a tyrosine kinase inhibitor that is FDA-approved for leukemia and potently inhibits DDR-1. Individuals diagnosed with mild–moderate Alzheimer’s disease (AD) treated with nilotinib (versus placebo) for 12 months showed reduction of amyloid plaque and cerebrospinal fluid (CSF) amyloid, and attenuation of hippocampal volume loss. However, the mechanisms are unclear. Here, we explored unbiased next generation whole genome miRNA sequencing from AD patients CSF and miRNAs were matched with their corresponding mRNAs using gene ontology. Changes in CSF miRNAs were confirmed via measurement of CSF DDR1 activity and plasma levels of AD biomarkers. Approximately 1050 miRNAs are detected in the CSF but only 17 miRNAs are specifically altered between baseline and 12-month treatment with nilotinib versus placebo. Treatment with nilotinib significantly reduces collagen and DDR1 gene expression (upregulated in AD brain), in association with inhibition of CSF DDR1. Pro-inflammatory cytokines, including interleukins and chemokines are reduced along with caspase-3 gene expression. Specific genes that indicate vascular fibrosis, e.g., collagen, Transforming Growth Factors (TGFs) and Tissue Inhibitors of Metalloproteases (TIMPs) are altered by DDR1 inhibition with nilotinib. Specific changes in vesicular transport, including the neurotransmitters dopamine and acetylcholine, and autophagy genes, including ATGs, indicate facilitation of autophagic flux and cellular trafficking. Inhibition of DDR1 with nilotinib may be a safe and effective adjunct treatment strategy involving an oral drug that enters the CNS and adequately engages its target. DDR1 inhibition with nilotinib exhibits multi-modal effects not only on amyloid and tau clearance but also on anti-inflammatory markers that may reduce cerebrovascular fibrosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, Lamb BT, Montine TJ, Nedergaard M, Schaffer CB, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement. 2015;11:710–7.PubMedCrossRef Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, Lamb BT, Montine TJ, Nedergaard M, Schaffer CB, et al. Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement. 2015;11:710–7.PubMedCrossRef
3.
go back to reference Gottesman RF, Schneider AL, Zhou Y, Coresh J, Green E, Gupta N, Knopman DS, Mintz A, Rahmim A, Sharrett AR, et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA. 2017;317:1443–50.PubMedPubMedCentralCrossRef Gottesman RF, Schneider AL, Zhou Y, Coresh J, Green E, Gupta N, Knopman DS, Mintz A, Rahmim A, Sharrett AR, et al. Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA. 2017;317:1443–50.PubMedPubMedCentralCrossRef
4.
go back to reference Costa RP, Padamsey Z, D’Amour JA, Emptage NJ, Froemke RC, Vogels TP. Synaptic transmission optimization predicts expression loci of long-term plasticity. Neuron. 2017;96(177–189): e177.CrossRef Costa RP, Padamsey Z, D’Amour JA, Emptage NJ, Froemke RC, Vogels TP. Synaptic transmission optimization predicts expression loci of long-term plasticity. Neuron. 2017;96(177–189): e177.CrossRef
6.
go back to reference Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.PubMedPubMedCentralCrossRef Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–50.PubMedPubMedCentralCrossRef
7.
go back to reference Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O’Brien JT, Barkhof F, Benavente OR, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–38.PubMedPubMedCentralCrossRef Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O’Brien JT, Barkhof F, Benavente OR, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–38.PubMedPubMedCentralCrossRef
9.
go back to reference Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25:270–6.PubMedPubMedCentralCrossRef Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25:270–6.PubMedPubMedCentralCrossRef
10.
go back to reference Bennett RE, Robbins AB, Hu M, Cao X, Betensky RA, Clark T, Das S, Hyman BT. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc Natl Acad Sci U S A. 2018;115:E1289–98.PubMedPubMedCentralCrossRef Bennett RE, Robbins AB, Hu M, Cao X, Betensky RA, Clark T, Das S, Hyman BT. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc Natl Acad Sci U S A. 2018;115:E1289–98.PubMedPubMedCentralCrossRef
11.
go back to reference Blair LJ, Frauen HD, Zhang B, Nordhues BA, Bijan S, Lin YC, Zamudio F, Hernandez LD, Sabbagh JJ, Selenica ML, Dickey CA. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun. 2015;3:8.PubMedPubMedCentralCrossRef Blair LJ, Frauen HD, Zhang B, Nordhues BA, Bijan S, Lin YC, Zamudio F, Hernandez LD, Sabbagh JJ, Selenica ML, Dickey CA. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun. 2015;3:8.PubMedPubMedCentralCrossRef
12.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.PubMedPubMedCentralCrossRef Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.PubMedPubMedCentralCrossRef
13.
go back to reference Franco C, Britto K, Wong E, Hou G, Zhu SN, Chen M, Cybulsky MI, Bendeck MP. Discoidin domain receptor 1 on bone marrow-derived cells promotes macrophage accumulation during atherogenesis. Circ Res. 2009;105:1141–8.PubMedCrossRef Franco C, Britto K, Wong E, Hou G, Zhu SN, Chen M, Cybulsky MI, Bendeck MP. Discoidin domain receptor 1 on bone marrow-derived cells promotes macrophage accumulation during atherogenesis. Circ Res. 2009;105:1141–8.PubMedCrossRef
14.
go back to reference Franco C, Hou G, Ahmad PJ, Fu EY, Koh L, Vogel WF, Bendeck MP. Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circ Res. 2008;102:1202–11.PubMedCrossRef Franco C, Hou G, Ahmad PJ, Fu EY, Koh L, Vogel WF, Bendeck MP. Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circ Res. 2008;102:1202–11.PubMedCrossRef
15.
go back to reference Flamant M, Placier S, Rodenas A, Curat CA, Vogel WF, Chatziantoniou C, Dussaule JC. Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J Am Soc Nephrol. 2006;17:3374–81.PubMedCrossRef Flamant M, Placier S, Rodenas A, Curat CA, Vogel WF, Chatziantoniou C, Dussaule JC. Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J Am Soc Nephrol. 2006;17:3374–81.PubMedCrossRef
16.
go back to reference Avivi-Green C, Singal M, Vogel WF. Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 2006;174:420–7.PubMedCrossRef Avivi-Green C, Singal M, Vogel WF. Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 2006;174:420–7.PubMedCrossRef
17.
go back to reference Zhu M, Xing D, Lu Z, Fan Y, Hou W, Dong H, Xiong L, Dong H. DDR1 may play a key role in destruction of the blood-brain barrier after cerebral ischemia-reperfusion. Neurosci Res. 2015;96:14–9.PubMedCrossRef Zhu M, Xing D, Lu Z, Fan Y, Hou W, Dong H, Xiong L, Dong H. DDR1 may play a key role in destruction of the blood-brain barrier after cerebral ischemia-reperfusion. Neurosci Res. 2015;96:14–9.PubMedCrossRef
18.
go back to reference Hebron ML, Lonskaya I, Moussa CE. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson’s disease models. Hum Mol Genet. 2013;22:3315–28.PubMedPubMedCentralCrossRef Hebron ML, Lonskaya I, Moussa CE. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson’s disease models. Hum Mol Genet. 2013;22:3315–28.PubMedPubMedCentralCrossRef
19.
go back to reference Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. 2013;5:1247–62. PubMedPubMedCentralCrossRef Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. 2013;5:1247–62. PubMedPubMedCentralCrossRef
20.
go back to reference Lonskaya I, Hebron M, Chen W, Schachter J, Moussa C. Tau deletion impairs intracellular beta-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener. 2014;9:46.PubMedPubMedCentralCrossRef Lonskaya I, Hebron M, Chen W, Schachter J, Moussa C. Tau deletion impairs intracellular beta-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener. 2014;9:46.PubMedPubMedCentralCrossRef
21.
go back to reference Fowler AJ HM, Missner AA, Wang R, Gao X, Kurd-Misto B, Liu X, Moussa C E-H: Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Mol Neurodegener 2018. Fowler AJ HM, Missner AA, Wang R, Gao X, Kurd-Misto B, Liu X, Moussa C E-H: Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Mol Neurodegener 2018.
25.
go back to reference Hebron M, Peyton M, Liu X, Gao X, Wang R, Lonskaya I, Moussa CE. Discoidin domain receptor inhibition reduces neuropathology and attenuates inflammation in neurodegeneration models. J Neuroimmunol. 2017;311:1–9.PubMedCrossRef Hebron M, Peyton M, Liu X, Gao X, Wang R, Lonskaya I, Moussa CE. Discoidin domain receptor inhibition reduces neuropathology and attenuates inflammation in neurodegeneration models. J Neuroimmunol. 2017;311:1–9.PubMedCrossRef
26.
28.
go back to reference Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci U S A. 2010;107:16691–6.PubMedPubMedCentralCrossRef Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci U S A. 2010;107:16691–6.PubMedPubMedCentralCrossRef
29.
go back to reference Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci. 2011;31:157–63.PubMedPubMedCentralCrossRef Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson’s disease. J Neurosci. 2011;31:157–63.PubMedPubMedCentralCrossRef
32.
go back to reference Fowler AJ, Ahn J, Hebron M, Chiu T, Ayoub R, Mulki S, Ressom H, Torres-Yaghi Y, Wilmarth B, Pagan FL, Moussa C. CSF MicroRNAs reveal impairment of angiogenesis and autophagy in parkinson disease. Neurol Genet. 2021;7: e633.PubMedPubMedCentralCrossRef Fowler AJ, Ahn J, Hebron M, Chiu T, Ayoub R, Mulki S, Ressom H, Torres-Yaghi Y, Wilmarth B, Pagan FL, Moussa C. CSF MicroRNAs reveal impairment of angiogenesis and autophagy in parkinson disease. Neurol Genet. 2021;7: e633.PubMedPubMedCentralCrossRef
36.
go back to reference Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.PubMedCrossRef Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.PubMedCrossRef
37.
go back to reference Oh S, Seo M, Choi JS, Joo CK, Lee SK. MiR-199a/b-5p inhibits lymphangiogenesis by targeting discoidin domain receptor 1 in corneal injury. Mol Cells. 2018;41:93–102.PubMedPubMedCentral Oh S, Seo M, Choi JS, Joo CK, Lee SK. MiR-199a/b-5p inhibits lymphangiogenesis by targeting discoidin domain receptor 1 in corneal injury. Mol Cells. 2018;41:93–102.PubMedPubMedCentral
38.
go back to reference Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6:179–92.PubMedPubMedCentralCrossRef Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6:179–92.PubMedPubMedCentralCrossRef
39.
go back to reference Leitinger B, Saltel F. Discoidin domain receptors: multitaskers for physiological and pathological processes. Cell Adh Migr. 2018;12:398–9.PubMedPubMedCentral Leitinger B, Saltel F. Discoidin domain receptors: multitaskers for physiological and pathological processes. Cell Adh Migr. 2018;12:398–9.PubMedPubMedCentral
40.
go back to reference Roberts ME, Magowan L, Hall IP, Johnson SR. Discoidin domain receptor 1 regulates bronchial epithelial repair and matrix metalloproteinase production. Eur Respir J. 2011;37:1482–93.PubMedCrossRef Roberts ME, Magowan L, Hall IP, Johnson SR. Discoidin domain receptor 1 regulates bronchial epithelial repair and matrix metalloproteinase production. Eur Respir J. 2011;37:1482–93.PubMedCrossRef
41.
go back to reference Dorison A, Dussaule JC, Chatziantoniou C. The role of discoidin domain receptor 1 in inflammation. Fibrosis Renal Dis Nephron. 2017;137:212–20. Dorison A, Dussaule JC, Chatziantoniou C. The role of discoidin domain receptor 1 in inflammation. Fibrosis Renal Dis Nephron. 2017;137:212–20.
42.
go back to reference Hashimoto T, Wakabayashi T, Watanabe A, Kowa H, Hosoda R, Nakamura A, Kanazawa I, Arai T, Takio K, Mann DM, Iwatsubo T. CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor. CLAC-P/collagen type XXV EMBO J. 2002;21:1524–34.PubMed Hashimoto T, Wakabayashi T, Watanabe A, Kowa H, Hosoda R, Nakamura A, Kanazawa I, Arai T, Takio K, Mann DM, Iwatsubo T. CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor. CLAC-P/collagen type XXV EMBO J. 2002;21:1524–34.PubMed
43.
go back to reference Kowa H, Sakakura T, Matsuura Y, Wakabayashi T, Mann DM, Duff K, Tsuji S, Hashimoto T, Iwatsubo T. Mostly separate distributions of CLAC- versus Abeta40- or thioflavin S-reactivities in senile plaques reveal two distinct subpopulations of beta-amyloid deposits. Am J Pathol. 2004;165:273–81.PubMedPubMedCentralCrossRef Kowa H, Sakakura T, Matsuura Y, Wakabayashi T, Mann DM, Duff K, Tsuji S, Hashimoto T, Iwatsubo T. Mostly separate distributions of CLAC- versus Abeta40- or thioflavin S-reactivities in senile plaques reveal two distinct subpopulations of beta-amyloid deposits. Am J Pathol. 2004;165:273–81.PubMedPubMedCentralCrossRef
44.
go back to reference Forsell C, Bjork BF, Lilius L, Axelman K, Fabre SF, Fratiglioni L, Winblad B, Graff C. Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer’s disease. Neurobiol Aging. 2010;31:409–15.PubMedCrossRef Forsell C, Bjork BF, Lilius L, Axelman K, Fabre SF, Fratiglioni L, Winblad B, Graff C. Genetic association to the amyloid plaque associated protein gene COL25A1 in Alzheimer’s disease. Neurobiol Aging. 2010;31:409–15.PubMedCrossRef
45.
go back to reference Tong Y, Xu Y, Scearce-Levie K, Ptacek LJ, Fu YH. COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo. Neurogenetics. 2010;11:41–52.PubMedCrossRef Tong Y, Xu Y, Scearce-Levie K, Ptacek LJ, Fu YH. COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo. Neurogenetics. 2010;11:41–52.PubMedCrossRef
46.
go back to reference Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41:e513-518.PubMedCrossRef Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41:e513-518.PubMedCrossRef
47.
go back to reference Lemmens R, Maugeri A, Niessen HW, Goris A, Tousseyn T, Demaerel P, Corveleyn A, Robberecht W, van der Knaap MS, Thijs VN, Zwijnenburg PJ. Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency. Hum Mol Genet. 2013;22:391–7.PubMedCrossRef Lemmens R, Maugeri A, Niessen HW, Goris A, Tousseyn T, Demaerel P, Corveleyn A, Robberecht W, van der Knaap MS, Thijs VN, Zwijnenburg PJ. Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency. Hum Mol Genet. 2013;22:391–7.PubMedCrossRef
48.
go back to reference Borza CM, Su Y, Tran TL, Yu L, Steyns N, Temple KJ, Skwark MJ, Meiler J, Lindsley CW, Hicks BR, et al. Discoidin domain receptor 1 kinase activity is required for regulating collagen IV synthesis. Matrix Biol. 2017;57–58:258–71.PubMedCrossRef Borza CM, Su Y, Tran TL, Yu L, Steyns N, Temple KJ, Skwark MJ, Meiler J, Lindsley CW, Hicks BR, et al. Discoidin domain receptor 1 kinase activity is required for regulating collagen IV synthesis. Matrix Biol. 2017;57–58:258–71.PubMedCrossRef
49.
go back to reference Chiusa M, Hu W, Liao HJ, Su Y, Borza CM, de Caestecker MP, Skrypnyk NI, Fogo AB, Pedchenko V, Li X, et al. The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus. J Am Soc Nephrol. 2019;30:1605–24.PubMedPubMedCentralCrossRef Chiusa M, Hu W, Liao HJ, Su Y, Borza CM, de Caestecker MP, Skrypnyk NI, Fogo AB, Pedchenko V, Li X, et al. The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus. J Am Soc Nephrol. 2019;30:1605–24.PubMedPubMedCentralCrossRef
50.
go back to reference Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth FX, Nagase H, Tschesche H, Maskos K. Insights into MMP-TIMP interactions. Ann N Y Acad Sci. 1999;878:73–91.PubMedCrossRef Bode W, Fernandez-Catalan C, Grams F, Gomis-Ruth FX, Nagase H, Tschesche H, Maskos K. Insights into MMP-TIMP interactions. Ann N Y Acad Sci. 1999;878:73–91.PubMedCrossRef
52.
go back to reference Matsuyama W, Mitsuyama H, Watanabe M, Shirahama Y, Higashimoto I, Osame M, Arimura K. Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 2005;33:565–73.PubMedCrossRef Matsuyama W, Mitsuyama H, Watanabe M, Shirahama Y, Higashimoto I, Osame M, Arimura K. Involvement of discoidin domain receptor 1 in the deterioration of pulmonary sarcoidosis. Am J Respir Cell Mol Biol. 2005;33:565–73.PubMedCrossRef
53.
go back to reference Matsuyama W, Watanabe M, Shirahama Y, Oonakahara K, Higashimoto I, Yoshimura T, Osame M, Arimura K. Activation of discoidin domain receptor 1 on CD14-positive bronchoalveolar lavage fluid cells induces chemokine production in idiopathic pulmonary fibrosis. J Immunol. 2005;174:6490–8.PubMedCrossRef Matsuyama W, Watanabe M, Shirahama Y, Oonakahara K, Higashimoto I, Yoshimura T, Osame M, Arimura K. Activation of discoidin domain receptor 1 on CD14-positive bronchoalveolar lavage fluid cells induces chemokine production in idiopathic pulmonary fibrosis. J Immunol. 2005;174:6490–8.PubMedCrossRef
54.
go back to reference Batra A, Lott DJ, Willcocks R, Forbes SC, Triplett W, Dastgir J, Yun P, Reghan Foley A, Bonnemann CG, Vandenborne K, Walter GA. Lower extremity muscle involvement in the intermediate and bethlem myopathy forms of COL6-related dystrophy and duchenne muscular dystrophy: a cross-sectional study. J Neuromuscul Dis. 2020;7:407–17.PubMedPubMedCentralCrossRef Batra A, Lott DJ, Willcocks R, Forbes SC, Triplett W, Dastgir J, Yun P, Reghan Foley A, Bonnemann CG, Vandenborne K, Walter GA. Lower extremity muscle involvement in the intermediate and bethlem myopathy forms of COL6-related dystrophy and duchenne muscular dystrophy: a cross-sectional study. J Neuromuscul Dis. 2020;7:407–17.PubMedPubMedCentralCrossRef
55.
go back to reference D’Amelio M, Serra L, Bozzali M. Ventral tegmental area in prodromal Alzheimer’s disease: bridging the gap between mice and humans. J Alzheimers Dis. 2018;63:181–3.PubMedCrossRef D’Amelio M, Serra L, Bozzali M. Ventral tegmental area in prodromal Alzheimer’s disease: bridging the gap between mice and humans. J Alzheimers Dis. 2018;63:181–3.PubMedCrossRef
56.
go back to reference Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR, Marino R, Federici M, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun. 2017;8:14727.PubMedPubMedCentralCrossRef Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR, Marino R, Federici M, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun. 2017;8:14727.PubMedPubMedCentralCrossRef
58.
go back to reference Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, Yusuf N, Starr NJ, Arellano J, Howard HH, et al. Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson’s disease. Pharmacol Res Perspect. 2019;7: e00470.PubMedPubMedCentralCrossRef Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, Yusuf N, Starr NJ, Arellano J, Howard HH, et al. Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson’s disease. Pharmacol Res Perspect. 2019;7: e00470.PubMedPubMedCentralCrossRef
59.
go back to reference Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, Wilmarth BM, Howard H, Dunn C, Carlson A, et al. Nilotinib effects in parkinson’s disease and dementia with lewy bodies. J Parkinsons Dis. 2016;6:503–17.PubMedPubMedCentralCrossRef Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, Wilmarth BM, Howard H, Dunn C, Carlson A, et al. Nilotinib effects in parkinson’s disease and dementia with lewy bodies. J Parkinsons Dis. 2016;6:503–17.PubMedPubMedCentralCrossRef
61.
go back to reference Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017;22:666–79.PubMedPubMedCentralCrossRef Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017;22:666–79.PubMedPubMedCentralCrossRef
62.
go back to reference Lonskaya I, Desforges NM, Hebron ML, Moussa CE. Ubiquitination increases parkin activity to promote autophagic alpha-synuclein clearance. PLoS ONE. 2013;8: e83914.PubMedPubMedCentralCrossRef Lonskaya I, Desforges NM, Hebron ML, Moussa CE. Ubiquitination increases parkin activity to promote autophagic alpha-synuclein clearance. PLoS ONE. 2013;8: e83914.PubMedPubMedCentralCrossRef
63.
go back to reference Lonskaya I, Hebron M, Desforges NM, Schachter JB, Moussa CE. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J Mol Med. 2014;92:373–86.PubMedCrossRef Lonskaya I, Hebron M, Desforges NM, Schachter JB, Moussa CE. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J Mol Med. 2014;92:373–86.PubMedCrossRef
64.
go back to reference Hebron ML, Javidnia M, Moussa CE. Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci. 2018;391:90–9.PubMedCrossRef Hebron ML, Javidnia M, Moussa CE. Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci. 2018;391:90–9.PubMedCrossRef
65.
go back to reference van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.PubMedCrossRef van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.PubMedCrossRef
66.
go back to reference Yang WN, Ma KG, Qian YH, Zhang JS, Feng GF, Shi LL, Zhang ZC, Liu ZH. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons. Int J Biochem Cell Biol. 2015;64:252–64.PubMedCrossRef Yang WN, Ma KG, Qian YH, Zhang JS, Feng GF, Shi LL, Zhang ZC, Liu ZH. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons. Int J Biochem Cell Biol. 2015;64:252–64.PubMedCrossRef
67.
go back to reference Sole-Domenech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer’s disease. Ageing Res Rev. 2016;32:89–103.PubMedPubMedCentralCrossRef Sole-Domenech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer’s disease. Ageing Res Rev. 2016;32:89–103.PubMedPubMedCentralCrossRef
Metadata
Title
Inhibition of discoidin domain receptor (DDR)-1 with nilotinib alters CSF miRNAs and is associated with reduced inflammation and vascular fibrosis in Alzheimer’s disease
Authors
Max Stevenson
Rency Varghese
Michaeline L. Hebron
Xiaoguang Liu
Nick Ratliff
Amelia Smith
R. Scott Turner
Charbel Moussa
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02802-0

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue