Skip to main content
Top
Published in: NeuroMolecular Medicine 1/2010

01-03-2010 | Original Paper

Alzheimer’s Disease Amyloid β-Protein and Synaptic Function

Authors: Tomas Ondrejcak, Igor Klyubin, Neng-Wei Hu, Andrew E. Barry, William K. Cullen, Michael J. Rowan

Published in: NeuroMolecular Medicine | Issue 1/2010

Login to get access

Abstract

Alzheimer’s disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid β-protein (Aβ) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble Aβ disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synapic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble Aβ that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of Aβ have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble Aβ, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of Aβ and that targeting muscarinic receptors can indirectly modulate Aβ’s actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.
Literature
go back to reference Abbott, J. J., Howlett, D. R., Francis, P. T., & Williams, R. J. (2008). Abeta(1–42) modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors. Neurobiology of Aging, 29, 992–1001.PubMedCrossRef Abbott, J. J., Howlett, D. R., Francis, P. T., & Williams, R. J. (2008). Abeta(1–42) modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors. Neurobiology of Aging, 29, 992–1001.PubMedCrossRef
go back to reference Albuquerque, E. X., Alkondon, M., Pereira, E. F., et al. (1997). Properties of neuronal nicotinic acetylcholine receptors: Pharmacological characterization and modulation of synaptic function. Journal of Pharmacology and Experimental Therapeutics, 280, 1117–1136.PubMed Albuquerque, E. X., Alkondon, M., Pereira, E. F., et al. (1997). Properties of neuronal nicotinic acetylcholine receptors: Pharmacological characterization and modulation of synaptic function. Journal of Pharmacology and Experimental Therapeutics, 280, 1117–1136.PubMed
go back to reference Almeida, C. G., Tampellini, D., Takahashi, R. H., et al. (2005). Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiology of Diseases, 20, 187–198.CrossRef Almeida, C. G., Tampellini, D., Takahashi, R. H., et al. (2005). Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiology of Diseases, 20, 187–198.CrossRef
go back to reference Anwyl, R. (1999). Metabotropic glutamate receptors: Electrophysiological properties and role in plasticity. Brain Research. Brain Research Reviews, 29, 83–120.PubMedCrossRef Anwyl, R. (1999). Metabotropic glutamate receptors: Electrophysiological properties and role in plasticity. Brain Research. Brain Research Reviews, 29, 83–120.PubMedCrossRef
go back to reference Arendt, T. (2009). Synaptic degeneration in Alzheimer’s disease. Acta Neuropathologica, 118, 167–179.PubMedCrossRef Arendt, T. (2009). Synaptic degeneration in Alzheimer’s disease. Acta Neuropathologica, 118, 167–179.PubMedCrossRef
go back to reference Arias, C., Arrieta, I., & Tapia, R. (1995). Beta-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. Journal of Neuroscience Research, 41, 561–566.PubMedCrossRef Arias, C., Arrieta, I., & Tapia, R. (1995). Beta-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. Journal of Neuroscience Research, 41, 561–566.PubMedCrossRef
go back to reference Auld, D. S., Kornecook, T. J., Bastianetto, S., & Quirion, R. (2002). Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology, 68, 209–245.PubMedCrossRef Auld, D. S., Kornecook, T. J., Bastianetto, S., & Quirion, R. (2002). Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology, 68, 209–245.PubMedCrossRef
go back to reference Bancroft, A., & Levin, E. D. (2000). Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology, 39, 2770–2778.PubMedCrossRef Bancroft, A., & Levin, E. D. (2000). Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology, 39, 2770–2778.PubMedCrossRef
go back to reference Barghorn, S., Nimmrich, V., Striebinger, A., et al. (2005). Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. Journal of Neurochemistry, 95, 834–847.PubMedCrossRef Barghorn, S., Nimmrich, V., Striebinger, A., et al. (2005). Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. Journal of Neurochemistry, 95, 834–847.PubMedCrossRef
go back to reference Bishop, G. M., & Robinson, S. R. (2004). Physiological roles of amyloid-beta and implications for its removal in Alzheimer’s disease. Drugs and Aging, 21, 621–630.PubMedCrossRef Bishop, G. M., & Robinson, S. R. (2004). Physiological roles of amyloid-beta and implications for its removal in Alzheimer’s disease. Drugs and Aging, 21, 621–630.PubMedCrossRef
go back to reference Biton, B., Bergis, O. E., Galli, F., et al. (2007). SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) Binding and functional profile. Neuropsychopharmacology, 32, 1–16.PubMedCrossRef Biton, B., Bergis, O. E., Galli, F., et al. (2007). SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) Binding and functional profile. Neuropsychopharmacology, 32, 1–16.PubMedCrossRef
go back to reference Blusztajn, J. K., & Berse, B. (2000). The cholinergic neuronal phenotype in Alzheimer’s disease. Metabolic Brain Disease, 15, 45–64.PubMed Blusztajn, J. K., & Berse, B. (2000). The cholinergic neuronal phenotype in Alzheimer’s disease. Metabolic Brain Disease, 15, 45–64.PubMed
go back to reference Bobich, J. A., Zheng, Q., & Campbell, A. (2004). Incubation of nerve endings with a physiological concentration of Abeta1-42 activates CaV2.2(N-Type)-voltage operated calcium channels and acutely increases glutamate and noradrenaline release. Journal of Alzheimer’s Disease, 6, 243–255.PubMed Bobich, J. A., Zheng, Q., & Campbell, A. (2004). Incubation of nerve endings with a physiological concentration of Abeta1-42 activates CaV2.2(N-Type)-voltage operated calcium channels and acutely increases glutamate and noradrenaline release. Journal of Alzheimer’s Disease, 6, 243–255.PubMed
go back to reference Bodick, N. C., Offen, W. W., Levey, A. I., et al. (1997). Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Archives of Neurology, 54, 465–473.PubMed Bodick, N. C., Offen, W. W., Levey, A. I., et al. (1997). Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Archives of Neurology, 54, 465–473.PubMed
go back to reference Bourin, M., Ripoll, N., & Dailly, E. (2003). Nicotinic receptors and Alzheimer’s disease. Current Medical Research and Opinion, 19, 169–177.PubMedCrossRef Bourin, M., Ripoll, N., & Dailly, E. (2003). Nicotinic receptors and Alzheimer’s disease. Current Medical Research and Opinion, 19, 169–177.PubMedCrossRef
go back to reference Busche, M. A., Eichhoff, G., Adelsberger, H., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.PubMedCrossRef Busche, M. A., Eichhoff, G., Adelsberger, H., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.PubMedCrossRef
go back to reference Bymaster, F. P., Shannon, H. E., Rasmussen, K., et al. (1998). Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R, 6R)6-(3-propylthio-1, 2, 5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane. European Journal of Pharmacology, 356, 109–119.PubMedCrossRef Bymaster, F. P., Shannon, H. E., Rasmussen, K., et al. (1998). Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R, 6R)6-(3-propylthio-1, 2, 5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane. European Journal of Pharmacology, 356, 109–119.PubMedCrossRef
go back to reference Cacucci, F., Yi, M., Wills, T. J., Chapman, P., & O’Keefe, J. (2008). Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proceedings of the National Academy of Sciences of the United States of America, 105, 7863–7868.PubMedCrossRef Cacucci, F., Yi, M., Wills, T. J., Chapman, P., & O’Keefe, J. (2008). Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proceedings of the National Academy of Sciences of the United States of America, 105, 7863–7868.PubMedCrossRef
go back to reference Chen, Q. S., Wei, W. Z., Shimahara, T., & Xie, C. W. (2002). Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiology of Learning and Memory, 77, 354–371.PubMedCrossRef Chen, Q. S., Wei, W. Z., Shimahara, T., & Xie, C. W. (2002). Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiology of Learning and Memory, 77, 354–371.PubMedCrossRef
go back to reference Chen, L., Yamada, K., Nabeshima, T., & Sokabe, M. (2006). Alpha7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology, 50, 254–268.PubMedCrossRef Chen, L., Yamada, K., Nabeshima, T., & Sokabe, M. (2006). Alpha7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology, 50, 254–268.PubMedCrossRef
go back to reference Cheng, L., Yin, W. J., Zhang, J. F., & Qi, J. S. (2009). Amyloid beta-protein fragments 25-35 and 31-35 potentiate long-term depression in hippocampal CA1 region of rats in vivo. Synapse, 63, 206–214.PubMedCrossRef Cheng, L., Yin, W. J., Zhang, J. F., & Qi, J. S. (2009). Amyloid beta-protein fragments 25-35 and 31-35 potentiate long-term depression in hippocampal CA1 region of rats in vivo. Synapse, 63, 206–214.PubMedCrossRef
go back to reference Chin, J. H., Ma, L., MacTavish, D., & Jhamandas, J. H. (2007). Amyloid beta protein modulates glutamate-mediated neurotransmission in the rat basal forebrain: Involvement of presynaptic neuronal nicotinic acetylcholine and metabotropic glutamate receptors. Journal of Neuroscience, 27, 9262–9269.PubMedCrossRef Chin, J. H., Ma, L., MacTavish, D., & Jhamandas, J. H. (2007). Amyloid beta protein modulates glutamate-mediated neurotransmission in the rat basal forebrain: Involvement of presynaptic neuronal nicotinic acetylcholine and metabotropic glutamate receptors. Journal of Neuroscience, 27, 9262–9269.PubMedCrossRef
go back to reference Chishti, M. A., Yang, D. S., Janus, C., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. Journal of Biological Chemistry, 276, 21562–21570.PubMedCrossRef Chishti, M. A., Yang, D. S., Janus, C., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. Journal of Biological Chemistry, 276, 21562–21570.PubMedCrossRef
go back to reference Cleary, J. P., Walsh, D. M., Hofmeister, J. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nature Neuroscience, 8, 79–84.PubMedCrossRef Cleary, J. P., Walsh, D. M., Hofmeister, J. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nature Neuroscience, 8, 79–84.PubMedCrossRef
go back to reference Coan, E. J., Irving, A. J., & Collingridge, G. L. (1989). Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neuroscience Letters, 105, 205–210.PubMedCrossRef Coan, E. J., Irving, A. J., & Collingridge, G. L. (1989). Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neuroscience Letters, 105, 205–210.PubMedCrossRef
go back to reference Court, J., Martin-Ruiz, C., Piggott, M., Spurden, D., Griffiths, M., & Perry, E. (2001). Nicotinic receptor abnormalities in Alzheimer’s disease. Biological Psychiatry, 49, 175–184.PubMedCrossRef Court, J., Martin-Ruiz, C., Piggott, M., Spurden, D., Griffiths, M., & Perry, E. (2001). Nicotinic receptor abnormalities in Alzheimer’s disease. Biological Psychiatry, 49, 175–184.PubMedCrossRef
go back to reference Cowburn, R. F., Wiehager, B., Trief, E., Li-Li, M., & Sundstrom, E. (1997). Effects of beta-amyloid-(25-35) peptides on radioligand binding to excitatory amino acid receptors and voltage-dependent calcium channels: Evidence for a selective affinity for the glutamate and glycine recognition sites of the NMDA receptor. Neurochemical Research, 22, 1437–1442.PubMedCrossRef Cowburn, R. F., Wiehager, B., Trief, E., Li-Li, M., & Sundstrom, E. (1997). Effects of beta-amyloid-(25-35) peptides on radioligand binding to excitatory amino acid receptors and voltage-dependent calcium channels: Evidence for a selective affinity for the glutamate and glycine recognition sites of the NMDA receptor. Neurochemical Research, 22, 1437–1442.PubMedCrossRef
go back to reference Cullen, W. K., Wu, J., Anwyl, R., & Rowan, M. J. (1996). Beta-amyloid produces a delayed NMDA receptor-dependent reduction in synaptic transmission in rat hippocampus. NeuroReport, 8, 87–92.PubMedCrossRef Cullen, W. K., Wu, J., Anwyl, R., & Rowan, M. J. (1996). Beta-amyloid produces a delayed NMDA receptor-dependent reduction in synaptic transmission in rat hippocampus. NeuroReport, 8, 87–92.PubMedCrossRef
go back to reference Cullen, W. K., Suh, Y. H., Anwyl, R., & Rowan, M. J. (1997). Block of LTP in rat hippocampus in vivo by β-amyloid precursor protein fragments. NeuroReport, 8, 3213–3217.PubMed Cullen, W. K., Suh, Y. H., Anwyl, R., & Rowan, M. J. (1997). Block of LTP in rat hippocampus in vivo by β-amyloid precursor protein fragments. NeuroReport, 8, 3213–3217.PubMed
go back to reference Dawson, G. R., Seabrook, G. R., Zheng, H., et al. (1999). Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience, 90, 1–13.PubMedCrossRef Dawson, G. R., Seabrook, G. R., Zheng, H., et al. (1999). Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience, 90, 1–13.PubMedCrossRef
go back to reference De Felice, F. G., Velasco, P. T., Lambert, M. P., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. Journal of Biological Chemistry, 282, 11590–11601.PubMedCrossRef De Felice, F. G., Velasco, P. T., Lambert, M. P., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. Journal of Biological Chemistry, 282, 11590–11601.PubMedCrossRef
go back to reference Deshpande, A., Kawai, H., Metherate, R., Glabe, C. G., & Busciglio, J. (2009). A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. Journal of Neuroscience, 29, 4004–4015.PubMedCrossRef Deshpande, A., Kawai, H., Metherate, R., Glabe, C. G., & Busciglio, J. (2009). A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. Journal of Neuroscience, 29, 4004–4015.PubMedCrossRef
go back to reference Dewachter, I., Filipkowski, R. K., Priller, C., et al. (2009). Deregulation of NMDA-receptor function and down-stream signaling in APP[V717I] transgenic mice. Neurobiology of Aging, 30, 241–256.PubMedCrossRef Dewachter, I., Filipkowski, R. K., Priller, C., et al. (2009). Deregulation of NMDA-receptor function and down-stream signaling in APP[V717I] transgenic mice. Neurobiology of Aging, 30, 241–256.PubMedCrossRef
go back to reference Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., & Sweatt, J. D. (2001). Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. Journal of Neuroscience, 21, 4125–4133.PubMed Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., & Sweatt, J. D. (2001). Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. Journal of Neuroscience, 21, 4125–4133.PubMed
go back to reference Dineley, K. T., Bell, K. A., Bui, D., & Sweatt, J. D. (2002). Beta-amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. Journal of Biological Chemistry, 277, 25056–25061.PubMedCrossRef Dineley, K. T., Bell, K. A., Bui, D., & Sweatt, J. D. (2002). Beta-amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. Journal of Biological Chemistry, 277, 25056–25061.PubMedCrossRef
go back to reference Domingues, A., Almeida, S., da Cruz e Silva, E. F., Oliveira, C. R., & Rego, A. C. (2007). Toxicity of beta-amyloid in HEK293 cells expressing NR1/NR2A or NR1/NR2B N-methyl-D-aspartate receptor subunits. Neurochemistry International, 50, 872–880.PubMedCrossRef Domingues, A., Almeida, S., da Cruz e Silva, E. F., Oliveira, C. R., & Rego, A. C. (2007). Toxicity of beta-amyloid in HEK293 cells expressing NR1/NR2A or NR1/NR2B N-methyl-D-aspartate receptor subunits. Neurochemistry International, 50, 872–880.PubMedCrossRef
go back to reference Dornan, W. A., Kang, D. E., McCampbell, A., & Kang, E. E. (1993). Bilateral injections of beta A(25-35) + IBO into the hippocampus disrupts acquisition of spatial learning in the rat. NeuroReport, 5, 165–168.PubMedCrossRef Dornan, W. A., Kang, D. E., McCampbell, A., & Kang, E. E. (1993). Bilateral injections of beta A(25-35) + IBO into the hippocampus disrupts acquisition of spatial learning in the rat. NeuroReport, 5, 165–168.PubMedCrossRef
go back to reference Dziewczapolski, G., Glogowski, C. M., Masliah, E., & Heinemann, S. F. (2009). Deletion of the alpha7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 29, 8805–8815.PubMedCrossRef Dziewczapolski, G., Glogowski, C. M., Masliah, E., & Heinemann, S. F. (2009). Deletion of the alpha7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 29, 8805–8815.PubMedCrossRef
go back to reference Ferchmin, P. A., Perez, D., Eterovic, V. A., & de Vellis, J. (2003). Nicotinic receptors differentially regulate N-methyl-D-aspartate damage in acute hippocampal slices. Journal of Pharmacology and Experimental Therapeutics, 305, 1071–1078.PubMedCrossRef Ferchmin, P. A., Perez, D., Eterovic, V. A., & de Vellis, J. (2003). Nicotinic receptors differentially regulate N-methyl-D-aspartate damage in acute hippocampal slices. Journal of Pharmacology and Experimental Therapeutics, 305, 1071–1078.PubMedCrossRef
go back to reference Fernandez-Tome, P., Brera, B., Arevalo, M. A., & de Ceballos, M. L. (2004). Beta-amyloid25–35 inhibits glutamate uptake in cultured neurons and astrocytes: Modulation of uptake as a survival mechanism. Neurobiology of Diseases, 15, 580–589.CrossRef Fernandez-Tome, P., Brera, B., Arevalo, M. A., & de Ceballos, M. L. (2004). Beta-amyloid25–35 inhibits glutamate uptake in cultured neurons and astrocytes: Modulation of uptake as a survival mechanism. Neurobiology of Diseases, 15, 580–589.CrossRef
go back to reference Fodero, L. R., Mok, S. S., Losic, D., et al. (2004). Alpha7-nicotinic acetylcholine receptors mediate an Abeta(1-42)-induced increase in the level of acetylcholinesterase in primary cortical neurones. Journal of Neurochemistry, 88, 1186–1193.PubMedCrossRef Fodero, L. R., Mok, S. S., Losic, D., et al. (2004). Alpha7-nicotinic acetylcholine receptors mediate an Abeta(1-42)-induced increase in the level of acetylcholinesterase in primary cortical neurones. Journal of Neurochemistry, 88, 1186–1193.PubMedCrossRef
go back to reference Frankiewicz, T., Potier, B., Bashir, Z. I., Collingridge, G. L., & Parsons, C. G. (1996). Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. British Journal of Pharmacology, 117, 689–697.PubMed Frankiewicz, T., Potier, B., Bashir, Z. I., Collingridge, G. L., & Parsons, C. G. (1996). Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. British Journal of Pharmacology, 117, 689–697.PubMed
go back to reference Freir, D. B., & Herron, C. E. (2003). Nicotine enhances the depressive actions of A beta 1-40 on long-term potentiation in the rat hippocampal CA1 region in vivo. Journal of Neurophysiology, 89, 2917–2922.PubMedCrossRef Freir, D. B., & Herron, C. E. (2003). Nicotine enhances the depressive actions of A beta 1-40 on long-term potentiation in the rat hippocampal CA1 region in vivo. Journal of Neurophysiology, 89, 2917–2922.PubMedCrossRef
go back to reference Fujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846, 137–143.PubMedCrossRef Fujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846, 137–143.PubMedCrossRef
go back to reference Gay, E. A., Giniatullin, R., Skorinkin, A., & Yakel, J. L. (2008). Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. Journal of Physiology, 586, 1105–1115.PubMedCrossRef Gay, E. A., Giniatullin, R., Skorinkin, A., & Yakel, J. L. (2008). Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. Journal of Physiology, 586, 1105–1115.PubMedCrossRef
go back to reference Ge, S., & Dani, J. A. (2005). Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. Journal of Neuroscience, 25, 6084–6091.PubMedCrossRef Ge, S., & Dani, J. A. (2005). Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. Journal of Neuroscience, 25, 6084–6091.PubMedCrossRef
go back to reference Geula, C., Nagykery, N., Nicholas, A., & Wu, C. K. (2008). Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 67, 309–318.PubMedCrossRef Geula, C., Nagykery, N., Nicholas, A., & Wu, C. K. (2008). Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 67, 309–318.PubMedCrossRef
go back to reference Goto, Y., Niidome, T., Hongo, H., Akaike, A., Kihara, T., & Sugimoto, H. (2008). Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. European Journal of Pharmacology, 583, 84–91.PubMedCrossRef Goto, Y., Niidome, T., Hongo, H., Akaike, A., Kihara, T., & Sugimoto, H. (2008). Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. European Journal of Pharmacology, 583, 84–91.PubMedCrossRef
go back to reference Grassi, F., Palma, E., Tonini, R., Amici, M., Ballivet, M., & Eusebi, F. (2003). Amyloid beta(1-42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. Journal of Physiology, 547, 147–157.PubMedCrossRef Grassi, F., Palma, E., Tonini, R., Amici, M., Ballivet, M., & Eusebi, F. (2003). Amyloid beta(1-42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. Journal of Physiology, 547, 147–157.PubMedCrossRef
go back to reference Greenamyre, J. T., & Young, A. B. (1989). Excitatory amino acids and Alzheimer’s disease. Neurobiology of Aging, 10, 593–602.PubMedCrossRef Greenamyre, J. T., & Young, A. B. (1989). Excitatory amino acids and Alzheimer’s disease. Neurobiology of Aging, 10, 593–602.PubMedCrossRef
go back to reference Gu, Z., Liu, W., & Yan, Z. (2009). Beta-amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. Journal of Biological Chemistry, 284, 10639–10649.PubMedCrossRef Gu, Z., Liu, W., & Yan, Z. (2009). Beta-amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. Journal of Biological Chemistry, 284, 10639–10649.PubMedCrossRef
go back to reference Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews. Molecular Cell Biology, 8, 101–112.PubMedCrossRef Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews. Molecular Cell Biology, 8, 101–112.PubMedCrossRef
go back to reference Harkany, T., Abraham, I., Timmerman, W., et al. (2000). Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. European Journal of Neuroscience, 12, 2735–2745.PubMedCrossRef Harkany, T., Abraham, I., Timmerman, W., et al. (2000). Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. European Journal of Neuroscience, 12, 2735–2745.PubMedCrossRef
go back to reference Harmeier, A., Wozny, C., Rost, B. R., et al. (2009). Role of amyloid-beta glycine 33 in oligomerization, toxicity, and neuronal plasticity. Journal of Neuroscience, 29, 7582–7590.PubMedCrossRef Harmeier, A., Wozny, C., Rost, B. R., et al. (2009). Role of amyloid-beta glycine 33 in oligomerization, toxicity, and neuronal plasticity. Journal of Neuroscience, 29, 7582–7590.PubMedCrossRef
go back to reference Harris, M. E., Carney, J. M., Cole, P. S., et al. (1995). Beta-amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: Implications for Alzheimer’s disease. NeuroReport, 6, 1875–1879.PubMedCrossRef Harris, M. E., Carney, J. M., Cole, P. S., et al. (1995). Beta-amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: Implications for Alzheimer’s disease. NeuroReport, 6, 1875–1879.PubMedCrossRef
go back to reference Hsieh, H., Boehm, J., Sato, C., et al. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron, 52, 831–843.PubMedCrossRef Hsieh, H., Boehm, J., Sato, C., et al. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron, 52, 831–843.PubMedCrossRef
go back to reference Hu, M., Schurdak, M. E., Puttfarcken, P. S., El Kouhen, R., Gopalakrishnan, M., & Li, J. (2007). High content screen microscopy analysis of A beta 1-42-induced neurite outgrowth reduction in rat primary cortical neurons: Neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands. Brain Research, 1151, 227–235.PubMedCrossRef Hu, M., Schurdak, M. E., Puttfarcken, P. S., El Kouhen, R., Gopalakrishnan, M., & Li, J. (2007). High content screen microscopy analysis of A beta 1-42-induced neurite outgrowth reduction in rat primary cortical neurons: Neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands. Brain Research, 1151, 227–235.PubMedCrossRef
go back to reference Hu, N. W., Smith, I. M., Walsh, D. M., & Rowan, M. J. (2008). Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain, 131, 2414–2424.PubMedCrossRef Hu, N. W., Smith, I. M., Walsh, D. M., & Rowan, M. J. (2008). Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain, 131, 2414–2424.PubMedCrossRef
go back to reference Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45, 583–595.PubMedCrossRef Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45, 583–595.PubMedCrossRef
go back to reference Ishida, A., Furukawa, K., Keller, J. N., & Mattson, M. P. (1997). Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. NeuroReport, 8, 2133–2137.PubMedCrossRef Ishida, A., Furukawa, K., Keller, J. N., & Mattson, M. P. (1997). Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. NeuroReport, 8, 2133–2137.PubMedCrossRef
go back to reference Janus, C., Pearson, J., McLaurin, J., et al. (2000). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.PubMedCrossRef Janus, C., Pearson, J., McLaurin, J., et al. (2000). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.PubMedCrossRef
go back to reference Ji, D., Lape, R., & Dani, J. A. (2001). Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron, 31, 131–141.PubMedCrossRef Ji, D., Lape, R., & Dani, J. A. (2001). Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron, 31, 131–141.PubMedCrossRef
go back to reference Jolas, T., Zhang, X. S., Zhang, Q., et al. (2002). Long-term potentiation is increased in the CA1 area of the hippocampus of APP(swe/ind) CRND8 mice. Neurobiology of Diseases, 11, 394–409.CrossRef Jolas, T., Zhang, X. S., Zhang, Q., et al. (2002). Long-term potentiation is increased in the CA1 area of the hippocampus of APP(swe/ind) CRND8 mice. Neurobiology of Diseases, 11, 394–409.CrossRef
go back to reference Jones, C. K., Brady, A. E., Davis, A. A., et al. (2008). Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. Journal of Neuroscience, 28, 10422–10433.PubMedCrossRef Jones, C. K., Brady, A. E., Davis, A. A., et al. (2008). Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. Journal of Neuroscience, 28, 10422–10433.PubMedCrossRef
go back to reference Kamenetz, F., Tomita, T., Hsieh, H., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.PubMedCrossRef Kamenetz, F., Tomita, T., Hsieh, H., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.PubMedCrossRef
go back to reference Kang, J. E., Cirrito, J. R., Dong, H., Csernansky, J. G., & Holtzman, D. M. (2007). Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 104, 10673–10678.PubMedCrossRef Kang, J. E., Cirrito, J. R., Dong, H., Csernansky, J. G., & Holtzman, D. M. (2007). Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 104, 10673–10678.PubMedCrossRef
go back to reference Keller, J. N., Pang, Z., Geddes, J. W., et al. (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. Journal of Neurochemistry, 69, 273–284.PubMed Keller, J. N., Pang, Z., Geddes, J. W., et al. (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. Journal of Neurochemistry, 69, 273–284.PubMed
go back to reference Kelly, B. L., & Ferreira, A. (2006). Beta-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. Journal of Biological Chemistry, 281, 28079–28089.PubMedCrossRef Kelly, B. L., & Ferreira, A. (2006). Beta-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. Journal of Biological Chemistry, 281, 28079–28089.PubMedCrossRef
go back to reference Kenney, J. E., & Gould, T. W. (2008). Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Molecular Neurobiology, 38, 101–121.PubMedCrossRef Kenney, J. E., & Gould, T. W. (2008). Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Molecular Neurobiology, 38, 101–121.PubMedCrossRef
go back to reference Kim, J. H., Anwyl, R., Suh, Y. H., Djamgoz, M. B., & Rowan, M. J. (2001). Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. Journal of Neuroscience, 21, 1327–1333.PubMed Kim, J. H., Anwyl, R., Suh, Y. H., Djamgoz, M. B., & Rowan, M. J. (2001). Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. Journal of Neuroscience, 21, 1327–1333.PubMed
go back to reference Klyubin, I., Walsh, D. M., Cullen, W. K., et al. (2004). Soluble Arctic amyloid beta protein inhibits hippocampal long-term potentiation in vivo. European Journal of Neuroscience, 19, 2839–2846.PubMedCrossRef Klyubin, I., Walsh, D. M., Cullen, W. K., et al. (2004). Soluble Arctic amyloid beta protein inhibits hippocampal long-term potentiation in vivo. European Journal of Neuroscience, 19, 2839–2846.PubMedCrossRef
go back to reference Klyubin, I., Betts, V., Welzel, A. T., et al. (2008). Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: Prevention by systemic passive immunization. Journal of Neuroscience, 28, 4231–4237.PubMedCrossRef Klyubin, I., Betts, V., Welzel, A. T., et al. (2008). Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: Prevention by systemic passive immunization. Journal of Neuroscience, 28, 4231–4237.PubMedCrossRef
go back to reference Koh, J. Y., Yang, L. L., & Cotman, C. W. (1990). Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Research, 533, 315–320.PubMedCrossRef Koh, J. Y., Yang, L. L., & Cotman, C. W. (1990). Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Research, 533, 315–320.PubMedCrossRef
go back to reference Kotermanski, S. E., & Johnson, J. W. (2009). Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. Journal of Neuroscience, 29, 2774–2779.PubMedCrossRef Kotermanski, S. E., & Johnson, J. W. (2009). Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. Journal of Neuroscience, 29, 2774–2779.PubMedCrossRef
go back to reference Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T., & Bacskai, B. J. (2009). Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science, 323, 1211–1215.PubMedCrossRef Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T., & Bacskai, B. J. (2009). Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science, 323, 1211–1215.PubMedCrossRef
go back to reference Lacor, P. N., Buniel, M. C., Furlow, P. W., et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.PubMedCrossRef Lacor, P. N., Buniel, M. C., Furlow, P. W., et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.PubMedCrossRef
go back to reference Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998). Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.PubMedCrossRef Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998). Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.PubMedCrossRef
go back to reference Lau, C. G., & Zukin, R. S. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Reviews Neuroscience, 8, 413–426.PubMedCrossRef Lau, C. G., & Zukin, R. S. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Reviews Neuroscience, 8, 413–426.PubMedCrossRef
go back to reference Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457, 1128–1132.PubMedCrossRef Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457, 1128–1132.PubMedCrossRef
go back to reference Lawlor, B. A., & Davis, K. L. (1992). Does modulation of glutamatergic function represent a viable therapeutic strategy in Alzheimer’s disease? Biological Psychiatry, 31, 337–350.PubMedCrossRef Lawlor, B. A., & Davis, K. L. (1992). Does modulation of glutamatergic function represent a viable therapeutic strategy in Alzheimer’s disease? Biological Psychiatry, 31, 337–350.PubMedCrossRef
go back to reference Lee, D. H., & Wang, H. Y. (2003). Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid-40 and beta-amyloid1-42. Journal of Neurobiology, 55, 25–30.PubMedCrossRef Lee, D. H., & Wang, H. Y. (2003). Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid-40 and beta-amyloid1-42. Journal of Neurobiology, 55, 25–30.PubMedCrossRef
go back to reference Lesne, S., Koh, M. T., Kotilinek, L., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.PubMedCrossRef Lesne, S., Koh, M. T., Kotilinek, L., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.PubMedCrossRef
go back to reference Léveillé, F., El Gaamouch, F., Gouix, E., et al. (2008). Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB Journal, 22, 4258–4271.PubMedCrossRef Léveillé, F., El Gaamouch, F., Gouix, E., et al. (2008). Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB Journal, 22, 4258–4271.PubMedCrossRef
go back to reference Levin, E. D., Bradley, A., Addy, N., & Sigurani, N. (2002). Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience, 109, 757–765.PubMedCrossRef Levin, E. D., Bradley, A., Addy, N., & Sigurani, N. (2002). Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience, 109, 757–765.PubMedCrossRef
go back to reference Li, S., Feig, L. A., & Hartley, D. M. (2007). A brief, but repeated, swimming protocol is sufficient to overcome amyloid beta-protein inhibition of hippocampal long-term potentiation. European Journal of Neuroscience, 26, 1289–1298.PubMedCrossRef Li, S., Feig, L. A., & Hartley, D. M. (2007). A brief, but repeated, swimming protocol is sufficient to overcome amyloid beta-protein inhibition of hippocampal long-term potentiation. European Journal of Neuroscience, 26, 1289–1298.PubMedCrossRef
go back to reference Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M., & Selkoe, D. (2009). Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 62, 788–801.PubMedCrossRef Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M., & Selkoe, D. (2009). Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 62, 788–801.PubMedCrossRef
go back to reference Lipton, S. A. (2007). Pathologically activated therapeutics for neuroprotection. Nature Reviews Neuroscience, 8, 803–808.PubMedCrossRef Lipton, S. A. (2007). Pathologically activated therapeutics for neuroprotection. Nature Reviews Neuroscience, 8, 803–808.PubMedCrossRef
go back to reference Lorenzo, A., & Yankner, B. A. (1996). Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Annals of the New York Academy of Sciences, 77, 89–95.CrossRef Lorenzo, A., & Yankner, B. A. (1996). Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Annals of the New York Academy of Sciences, 77, 89–95.CrossRef
go back to reference Lue, L. F., Kuo, Y. M., Roher, A. E., et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American Journal of Pathology, 155, 853–862.PubMed Lue, L. F., Kuo, Y. M., Roher, A. E., et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American Journal of Pathology, 155, 853–862.PubMed
go back to reference Ma, H., Lesne, S., Kotilinek, L., et al. (2007). Involvement of beta-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 104, 8167–8172.PubMedCrossRef Ma, H., Lesne, S., Kotilinek, L., et al. (2007). Involvement of beta-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 104, 8167–8172.PubMedCrossRef
go back to reference Machova, E., Jakubik, J., Michal, P., et al. (2008). Impairment of muscarinic transmission in transgenic APPswe/PS1dE9 mice. Neurobiology of Aging, 29, 368–378.PubMedCrossRef Machova, E., Jakubik, J., Michal, P., et al. (2008). Impairment of muscarinic transmission in transgenic APPswe/PS1dE9 mice. Neurobiology of Aging, 29, 368–378.PubMedCrossRef
go back to reference Mann, E. O., & Greenfield, S. A. (2003). Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. Journal of Physiology, 551, 539–550.PubMedCrossRef Mann, E. O., & Greenfield, S. A. (2003). Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. Journal of Physiology, 551, 539–550.PubMedCrossRef
go back to reference Martin, S. E., de Fiebre, N. E., & de Fiebre, C. M. (2004). The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1–42 toxicity in primary neuron-enriched cultures. Brain Research, 1022, 254–256.PubMedCrossRef Martin, S. E., de Fiebre, N. E., & de Fiebre, C. M. (2004). The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1–42 toxicity in primary neuron-enriched cultures. Brain Research, 1022, 254–256.PubMedCrossRef
go back to reference Matos, M., Augusto, E., Oliveira, C. R., & Agostinho, P. (2008). Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: Involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience, 156, 898–910.PubMedCrossRef Matos, M., Augusto, E., Oliveira, C. R., & Agostinho, P. (2008). Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: Involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience, 156, 898–910.PubMedCrossRef
go back to reference Matsuyama, S., Matsumoto, A., Enomoto, T., & Nishizaki, T. (2000). Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. European Journal of Neuroscience, 12, 3741–3747.PubMedCrossRef Matsuyama, S., Matsumoto, A., Enomoto, T., & Nishizaki, T. (2000). Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. European Journal of Neuroscience, 12, 3741–3747.PubMedCrossRef
go back to reference Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal of Neuroscience, 12, 376–389.PubMed Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal of Neuroscience, 12, 376–389.PubMed
go back to reference Maurice, T., Lockhart, B. P., & Privat, A. (1996). Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Research, 706, 181–193.PubMedCrossRef Maurice, T., Lockhart, B. P., & Privat, A. (1996). Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Research, 706, 181–193.PubMedCrossRef
go back to reference McDonald, M. P., Dahl, E. E., Overmier, J. B., Mantyh, P., & Cleary, J. (1994). Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Behavioral and Neural Biology, 62, 60–67.PubMedCrossRef McDonald, M. P., Dahl, E. E., Overmier, J. B., Mantyh, P., & Cleary, J. (1994). Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Behavioral and Neural Biology, 62, 60–67.PubMedCrossRef
go back to reference McLean, C. A., Cherny, R. A., Fraser, F. W., et al. (1999). Soluble pool of A beta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866.PubMedCrossRef McLean, C. A., Cherny, R. A., Fraser, F. W., et al. (1999). Soluble pool of A beta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866.PubMedCrossRef
go back to reference Molnar, Z., Soos, K., Lengyel, I., Penke, B., Szegedi, V., & Budai, D. (2004). Enhancement of NMDA responses by beta-amyloid peptides in the hippocampus in vivo. NeuroReport, 15, 1649–1652.PubMedCrossRef Molnar, Z., Soos, K., Lengyel, I., Penke, B., Szegedi, V., & Budai, D. (2004). Enhancement of NMDA responses by beta-amyloid peptides in the hippocampus in vivo. NeuroReport, 15, 1649–1652.PubMedCrossRef
go back to reference Morris, R. G., Moser, E. I., Riedel, G., et al. (2003). Elements of a neurobiological theory of the hippocampus: The role of activity-dependent synaptic plasticity in memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 773–786.PubMedCrossRef Morris, R. G., Moser, E. I., Riedel, G., et al. (2003). Elements of a neurobiological theory of the hippocampus: The role of activity-dependent synaptic plasticity in memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 773–786.PubMedCrossRef
go back to reference Mousavi, M., & Hellstrom-Lindahl, E. (2009). Nicotinic receptor agonists and antagonists increase sAPPalpha secretion and decrease Abeta levels in vitro. Neurochemistry International, 54, 237–244.PubMedCrossRef Mousavi, M., & Hellstrom-Lindahl, E. (2009). Nicotinic receptor agonists and antagonists increase sAPPalpha secretion and decrease Abeta levels in vitro. Neurochemistry International, 54, 237–244.PubMedCrossRef
go back to reference Muller, U., Cristina, N., Li, Z. W., et al. (1994). Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell, 79, 755–765.PubMedCrossRef Muller, U., Cristina, N., Li, Z. W., et al. (1994). Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell, 79, 755–765.PubMedCrossRef
go back to reference Nakamura, S., Murayama, N., Noshita, T., Katsuragi, R., & Ohno, T. (2006). Cognitive dysfunction induced by sequential injection of amyloid-beta and ibotenate into the bilateral hippocampus; protection by memantine and MK-801. European Journal of Pharmacology, 548, 115–122.PubMedCrossRef Nakamura, S., Murayama, N., Noshita, T., Katsuragi, R., & Ohno, T. (2006). Cognitive dysfunction induced by sequential injection of amyloid-beta and ibotenate into the bilateral hippocampus; protection by memantine and MK-801. European Journal of Pharmacology, 548, 115–122.PubMedCrossRef
go back to reference Newhouse, P. A., Potter, A., & Singh, A. (2004). Effects of nicotinic stimulation on cognitive performance. Current Opinion in Pharmacology, 4, 36–46.PubMedCrossRef Newhouse, P. A., Potter, A., & Singh, A. (2004). Effects of nicotinic stimulation on cognitive performance. Current Opinion in Pharmacology, 4, 36–46.PubMedCrossRef
go back to reference Nitta, A., Itoh, A., Hasegawa, T., & Nabeshima, T. (1994). Beta-amyloid protein-induced Alzheimer’s disease animal model. Neuroscience Letters, 170, 63–66.PubMedCrossRef Nitta, A., Itoh, A., Hasegawa, T., & Nabeshima, T. (1994). Beta-amyloid protein-induced Alzheimer’s disease animal model. Neuroscience Letters, 170, 63–66.PubMedCrossRef
go back to reference Noda, M., Nakanishi, H., & Akaike, N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience, 92, 1465–1474.PubMedCrossRef Noda, M., Nakanishi, H., & Akaike, N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience, 92, 1465–1474.PubMedCrossRef
go back to reference Nordberg, A., Alafuzoff, I., & Winblad, B. (1992). Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. Journal of Neuroscience Research, 31, 103–111.PubMedCrossRef Nordberg, A., Alafuzoff, I., & Winblad, B. (1992). Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. Journal of Neuroscience Research, 31, 103–111.PubMedCrossRef
go back to reference Oddo, S., & LaFerla, F. M. (2006). The role of nicotinic acetylcholine receptors in Alzheimer’s disease. Journal of Physiology (Paris), 99, 172–179.CrossRef Oddo, S., & LaFerla, F. M. (2006). The role of nicotinic acetylcholine receptors in Alzheimer’s disease. Journal of Physiology (Paris), 99, 172–179.CrossRef
go back to reference Origlia, N., Righi, M., Capsoni, S., et al. (2008). Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. Journal of Neuroscience, 28, 3521–3530.PubMedCrossRef Origlia, N., Righi, M., Capsoni, S., et al. (2008). Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. Journal of Neuroscience, 28, 3521–3530.PubMedCrossRef
go back to reference Parsons, C. G., Stoffler, A., & Danysz, W. (2007). Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse. Neuropharmacology, 53, 699–723.PubMedCrossRef Parsons, C. G., Stoffler, A., & Danysz, W. (2007). Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse. Neuropharmacology, 53, 699–723.PubMedCrossRef
go back to reference Pena, F., Gutierrez-Lerma, A., Quiroz-Baez, R., & Arias, C. (2006). The role of beta-amyloid protein in synaptic function: Implications for Alzheimer’s disease therapy. Current Neuropharmacology, 4, 149–163.PubMedCrossRef Pena, F., Gutierrez-Lerma, A., Quiroz-Baez, R., & Arias, C. (2006). The role of beta-amyloid protein in synaptic function: Implications for Alzheimer’s disease therapy. Current Neuropharmacology, 4, 149–163.PubMedCrossRef
go back to reference Pettit, D. L., Shao, Z., & Yakel, J. L. (2001). Beta-amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. Journal of Neuroscience, 21, RC120.PubMed Pettit, D. L., Shao, Z., & Yakel, J. L. (2001). Beta-amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. Journal of Neuroscience, 21, RC120.PubMed
go back to reference Phinney, A. L., Calhoun, M. E., Wolfer, D. P., Lipp, H. P., Zheng, H., & Jucker, M. (1999). No hippocampal neuron or synaptic bouton loss in learning-impaired aged beta-amyloid precursor protein-null mice. Neuroscience, 90, 1207–1216.PubMedCrossRef Phinney, A. L., Calhoun, M. E., Wolfer, D. P., Lipp, H. P., Zheng, H., & Jucker, M. (1999). No hippocampal neuron or synaptic bouton loss in learning-impaired aged beta-amyloid precursor protein-null mice. Neuroscience, 90, 1207–1216.PubMedCrossRef
go back to reference Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C., & Pearson, H. A. (2003). The production of amyloid beta peptide is a critical requirement for the viability of central neurons. Journal of Neuroscience, 23, 5531–5535.PubMed Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C., & Pearson, H. A. (2003). The production of amyloid beta peptide is a critical requirement for the viability of central neurons. Journal of Neuroscience, 23, 5531–5535.PubMed
go back to reference Puzzo, D., Privitera, L., Leznik, E., et al. (2008). Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. Journal of Neuroscience, 28, 14537–14545.PubMedCrossRef Puzzo, D., Privitera, L., Leznik, E., et al. (2008). Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. Journal of Neuroscience, 28, 14537–14545.PubMedCrossRef
go back to reference Ramsden, M., Plant, L. D., Webster, N. J., Vaughan, P. F., Henderson, Z., & Pearson, H. A. (2001). Differential effects of unaggregated and aggregated amyloid beta protein (1-40) on K(+) channel currents in primary cultures of rat cerebellar granule and cortical neurones. Journal of Neurochemistry, 79, 699–712.PubMedCrossRef Ramsden, M., Plant, L. D., Webster, N. J., Vaughan, P. F., Henderson, Z., & Pearson, H. A. (2001). Differential effects of unaggregated and aggregated amyloid beta protein (1-40) on K(+) channel currents in primary cultures of rat cerebellar granule and cortical neurones. Journal of Neurochemistry, 79, 699–712.PubMedCrossRef
go back to reference Raymond, C. R., Ireland, D. R., & Abraham, W. C. (2003). NMDA receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus. Brain Research, 968, 263–272.PubMedCrossRef Raymond, C. R., Ireland, D. R., & Abraham, W. C. (2003). NMDA receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus. Brain Research, 968, 263–272.PubMedCrossRef
go back to reference Reitz, C., Honig, L., Vonsattel, J. P., Tang, M. X., & Mayeux, R. (2009). Memory performance is related to amyloid and tau pathology in the hippocampus. Journal of Neurology, Neurosurgery and Psychiatry, 80, 715–721.CrossRef Reitz, C., Honig, L., Vonsattel, J. P., Tang, M. X., & Mayeux, R. (2009). Memory performance is related to amyloid and tau pathology in the hippocampus. Journal of Neurology, Neurosurgery and Psychiatry, 80, 715–721.CrossRef
go back to reference Ring, S., Weyer, S. W., Kilian, S. B., et al. (2007). The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. Journal of Neuroscience, 27, 7817–7826.PubMedCrossRef Ring, S., Weyer, S. W., Kilian, S. B., et al. (2007). The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. Journal of Neuroscience, 27, 7817–7826.PubMedCrossRef
go back to reference Roselli, F., Tirard, M., Lu, J., et al. (2005). Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. Journal of Neuroscience, 25, 11061–11070.PubMedCrossRef Roselli, F., Tirard, M., Lu, J., et al. (2005). Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. Journal of Neuroscience, 25, 11061–11070.PubMedCrossRef
go back to reference Roth, M., Tomlinson, B. E., & Blessed, G. (1966). Correlation between scores for dementia and counts of ‘senile plaques’ in cerebral grey matter of elderly subjects. Nature, 209, 109–110.PubMedCrossRef Roth, M., Tomlinson, B. E., & Blessed, G. (1966). Correlation between scores for dementia and counts of ‘senile plaques’ in cerebral grey matter of elderly subjects. Nature, 209, 109–110.PubMedCrossRef
go back to reference Rowan, M. J., Klyubin, I., Cullen, W. K., & Anwyl, R. (2003). Synaptic plasticity in animal models of early Alzheimer’s disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 821–828.PubMedCrossRef Rowan, M. J., Klyubin, I., Cullen, W. K., & Anwyl, R. (2003). Synaptic plasticity in animal models of early Alzheimer’s disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 821–828.PubMedCrossRef
go back to reference Rowan, M. J., Klyubin, I., Wang, Q., Hu, N. W., & Anwyl, R. (2007). Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochemical Society Transactions, 35, 1219–1223.PubMedCrossRef Rowan, M. J., Klyubin, I., Wang, Q., Hu, N. W., & Anwyl, R. (2007). Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochemical Society Transactions, 35, 1219–1223.PubMedCrossRef
go back to reference Santos-Torres, J., Fuente, A., Criado, J. M., Riolobos, A. S., Heredia, M., & Yajeya, J. (2007). Glutamatergic synaptic depression by synthetic amyloid beta-peptide in the medial septum. Journal of Neuroscience Research, 85, 634–648.PubMedCrossRef Santos-Torres, J., Fuente, A., Criado, J. M., Riolobos, A. S., Heredia, M., & Yajeya, J. (2007). Glutamatergic synaptic depression by synthetic amyloid beta-peptide in the medial septum. Journal of Neuroscience Research, 85, 634–648.PubMedCrossRef
go back to reference Schliebs, R., & Arendt, T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. Journal of Neural Transmission, 113, 1625–1644.PubMedCrossRef Schliebs, R., & Arendt, T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. Journal of Neural Transmission, 113, 1625–1644.PubMedCrossRef
go back to reference Seabrook, G. R., Smith, D. W., Bowery, B. J., et al. (1999). Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology, 38, 349–359.PubMedCrossRef Seabrook, G. R., Smith, D. W., Bowery, B. J., et al. (1999). Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology, 38, 349–359.PubMedCrossRef
go back to reference Senechal, Y., Larmet, Y., & Dev, K. K. (2006). Unraveling in vivo functions of amyloid precursor protein: Insights from knockout and knockdown studies. Neurodegenerative Diseases, 3, 134–147.PubMedCrossRef Senechal, Y., Larmet, Y., & Dev, K. K. (2006). Unraveling in vivo functions of amyloid precursor protein: Insights from knockout and knockdown studies. Neurodegenerative Diseases, 3, 134–147.PubMedCrossRef
go back to reference Senechal, Y., Kelly, P. H., & Dev, K. K. (2008). Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behavioural Brain Research, 186, 126–132.PubMedCrossRef Senechal, Y., Kelly, P. H., & Dev, K. K. (2008). Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behavioural Brain Research, 186, 126–132.PubMedCrossRef
go back to reference Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. Journal of Neuroscience, 27, 2866–2875.PubMedCrossRef Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. Journal of Neuroscience, 27, 2866–2875.PubMedCrossRef
go back to reference Shankar, G. M., Li, S., Mehta, T. H., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837–842.PubMedCrossRef Shankar, G. M., Li, S., Mehta, T. H., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837–842.PubMedCrossRef
go back to reference Shinoe, T., Matsui, M., Taketo, M. M., & Manabe, T. (2005). Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. Journal of Neuroscience, 25, 11194–11200.PubMedCrossRef Shinoe, T., Matsui, M., Taketo, M. M., & Manabe, T. (2005). Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. Journal of Neuroscience, 25, 11194–11200.PubMedCrossRef
go back to reference Small, D. H. (2008). Network dysfunction in Alzheimer’s disease: Does synaptic scaling drive disease progression? Trends in Molecular Medicine, 14, 103–108.PubMed Small, D. H. (2008). Network dysfunction in Alzheimer’s disease: Does synaptic scaling drive disease progression? Trends in Molecular Medicine, 14, 103–108.PubMed
go back to reference Snyder, E. M., Nong, Y., Almeida, C. G., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058.PubMedCrossRef Snyder, E. M., Nong, Y., Almeida, C. G., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058.PubMedCrossRef
go back to reference Soriano, F. X., & Hardingham, G. E. (1997). Compartmentalized NMDA receptor signalling to survival and death. Journal of Physiology, 584, 381–387.CrossRef Soriano, F. X., & Hardingham, G. E. (1997). Compartmentalized NMDA receptor signalling to survival and death. Journal of Physiology, 584, 381–387.CrossRef
go back to reference Srivareerat, M., Tran, T. T., Alzoubi, K. H., & Alkadhi, K. A. (2009a). Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer’s disease. Biological Psychiatry, 65, 918–926.PubMedCrossRef Srivareerat, M., Tran, T. T., Alzoubi, K. H., & Alkadhi, K. A. (2009a). Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer’s disease. Biological Psychiatry, 65, 918–926.PubMedCrossRef
go back to reference Srivareerat, M., Tran, T. T., Salim, S., Aleisa, A. M., & Alkadhi, K. A. (2009b). Chronic nicotine restores normal Abeta levels and prevents short-term memory and E-LTP impairment in Abeta rat model of Alzheimer’s disease. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2009.04.015. Srivareerat, M., Tran, T. T., Salim, S., Aleisa, A. M., & Alkadhi, K. A. (2009b). Chronic nicotine restores normal Abeta levels and prevents short-term memory and E-LTP impairment in Abeta rat model of Alzheimer’s disease. Neurobiology of Aging. doi:10.​1016/​j.​neurobiolaging.​2009.​04.​015.
go back to reference Stephan, A., Laroche, S., & Davis, S. (2001). Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. Journal of Neuroscience, 21, 5703–5714.PubMed Stephan, A., Laroche, S., & Davis, S. (2001). Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. Journal of Neuroscience, 21, 5703–5714.PubMed
go back to reference Szegedi, V., Juhasz, G., Budai, D., & Penke, B. (2005). Divergent effects of Abeta1-42 on ionotropic glutamate receptor-mediated responses in CA1 neurons in vivo. Brain Research, 1062, 120–126.PubMedCrossRef Szegedi, V., Juhasz, G., Budai, D., & Penke, B. (2005). Divergent effects of Abeta1-42 on ionotropic glutamate receptor-mediated responses in CA1 neurons in vivo. Brain Research, 1062, 120–126.PubMedCrossRef
go back to reference Taylor, C. J., Ireland, D. R., Ballagh, I., et al. (2008). Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiology of Diseases, 31, 250–260.CrossRef Taylor, C. J., Ireland, D. R., Ballagh, I., et al. (2008). Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiology of Diseases, 31, 250–260.CrossRef
go back to reference Teaktong, T., Graham, A. J., Court, J. A., et al. (2004). Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: Differential neuronal and astroglial pathology. Journal of the Neurological Sciences, 225, 39–49.PubMedCrossRef Teaktong, T., Graham, A. J., Court, J. A., et al. (2004). Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: Differential neuronal and astroglial pathology. Journal of the Neurological Sciences, 225, 39–49.PubMedCrossRef
go back to reference Terry, R. D. (1996). The pathogenesis of Alzheimer disease: An alternative to the amyloid hypothesis. Journal of Neuropathology and Experimental Neurology, 55, 1023–1025.PubMedCrossRef Terry, R. D. (1996). The pathogenesis of Alzheimer disease: An alternative to the amyloid hypothesis. Journal of Neuropathology and Experimental Neurology, 55, 1023–1025.PubMedCrossRef
go back to reference Tietje, K. R., Anderson, D. J., Bitner, R. S., et al. (2008). Preclinical characterization of A-582941: A novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neuroscience and Therapeutics, 14, 65–82.PubMedCrossRef Tietje, K. R., Anderson, D. J., Bitner, R. S., et al. (2008). Preclinical characterization of A-582941: A novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neuroscience and Therapeutics, 14, 65–82.PubMedCrossRef
go back to reference Turner, P. R., O’Connor, K., Tate, W. P., & Abraham, W. C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in Neurobiology, 70, 1–32.PubMedCrossRef Turner, P. R., O’Connor, K., Tate, W. P., & Abraham, W. C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in Neurobiology, 70, 1–32.PubMedCrossRef
go back to reference Verdier, Y., & Penke, B. (2004). Binding sites of amyloid beta-peptide in cell plasma membrane and implications for Alzheimer’s disease. Current Protein and Peptide Science, 5, 19–31.PubMedCrossRef Verdier, Y., & Penke, B. (2004). Binding sites of amyloid beta-peptide in cell plasma membrane and implications for Alzheimer’s disease. Current Protein and Peptide Science, 5, 19–31.PubMedCrossRef
go back to reference Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.PubMedCrossRef Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.PubMedCrossRef
go back to reference Wang, J., Dickson, D. W., Trojanowski, J. Q., & Lee, V. M. (1999). The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Experimental Neurology, 158, 328–337.PubMedCrossRef Wang, J., Dickson, D. W., Trojanowski, J. Q., & Lee, V. M. (1999). The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Experimental Neurology, 158, 328–337.PubMedCrossRef
go back to reference Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., & Reitz, A. B. (2000). Beta-amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. Journal of Biological Chemistry, 275, 5626–5632.PubMedCrossRef Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., & Reitz, A. B. (2000). Beta-amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. Journal of Biological Chemistry, 275, 5626–5632.PubMedCrossRef
go back to reference Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J., & Anwyl, R. (2004). Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. Journal of Neuroscience, 24, 3370–3378.PubMedCrossRef Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J., & Anwyl, R. (2004). Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. Journal of Neuroscience, 24, 3370–3378.PubMedCrossRef
go back to reference Wang, Q., Klyubin, I., Wright, S., Griswold-Prenner, I., Rowan, M. J., & Anwyl, R. (2007). Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. Neurobiology of Aging, 29, 1485–1493 Wang, Q., Klyubin, I., Wright, S., Griswold-Prenner, I., Rowan, M. J., & Anwyl, R. (2007). Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. Neurobiology of Aging, 29, 1485–1493
go back to reference Wang, H., Song, L., Laird, F., Wong, P. C., & Lee, H. K. (2008a). BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus. Journal of Neuroscience, 28, 8677–8681.PubMedCrossRef Wang, H., Song, L., Laird, F., Wong, P. C., & Lee, H. K. (2008a). BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus. Journal of Neuroscience, 28, 8677–8681.PubMedCrossRef
go back to reference Wang, Q., Klyubin, I., Wright, S., Griswold-Prenner, I., Rowan, M. J., & Anwyl, R. (2008b). Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. Neurobiology of Aging, 29, 1485–1493.PubMedCrossRef Wang, Q., Klyubin, I., Wright, S., Griswold-Prenner, I., Rowan, M. J., & Anwyl, R. (2008b). Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. Neurobiology of Aging, 29, 1485–1493.PubMedCrossRef
go back to reference Warpman, U., Alafuzoff, I., & Nordberg, A. (1993). Coupling of muscarinic receptors to GTP proteins in postmortem human brain—alterations in Alzheimer’s disease. Neuroscience Letters, 150, 39–43.PubMedCrossRef Warpman, U., Alafuzoff, I., & Nordberg, A. (1993). Coupling of muscarinic receptors to GTP proteins in postmortem human brain—alterations in Alzheimer’s disease. Neuroscience Letters, 150, 39–43.PubMedCrossRef
go back to reference Wasling, P., Daborg, J., Riebe, I., et al. (2009). Synaptic retrogenesis and amyloid-beta in Alzheimer’s disease. Journal of Alzheimers Disease, 16, 1–14. Wasling, P., Daborg, J., Riebe, I., et al. (2009). Synaptic retrogenesis and amyloid-beta in Alzheimer’s disease. Journal of Alzheimers Disease, 16, 1–14.
go back to reference Welsby, P., Rowan, M., & Anwyl, R. (2006). Nicotinic receptor-mediated enhancement of long-term potentiation involves activation of metabotropic glutamate receptors and ryanodine-sensitive calcium stores in the dentate gyrus. European Journal of Neuroscience, 24, 3109–3118.PubMedCrossRef Welsby, P., Rowan, M., & Anwyl, R. (2006). Nicotinic receptor-mediated enhancement of long-term potentiation involves activation of metabotropic glutamate receptors and ryanodine-sensitive calcium stores in the dentate gyrus. European Journal of Neuroscience, 24, 3109–3118.PubMedCrossRef
go back to reference Welsby, P. J., Rowan, M. J., & Anwyl, R. (2007). Beta-amyloid blocks high frequency stimulation induced LTP but not nicotine enhanced LTP. Neuropharmacology, 53, 188–195.PubMedCrossRef Welsby, P. J., Rowan, M. J., & Anwyl, R. (2007). Beta-amyloid blocks high frequency stimulation induced LTP but not nicotine enhanced LTP. Neuropharmacology, 53, 188–195.PubMedCrossRef
go back to reference Welsby, P. J., Rowan, M. J., & Anwyl, R. (2009). Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus. European Journal of Neuroscience, 29, 65–75.PubMedCrossRef Welsby, P. J., Rowan, M. J., & Anwyl, R. (2009). Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus. European Journal of Neuroscience, 29, 65–75.PubMedCrossRef
go back to reference Wevers, A., Monteggia, L., Nowacki, S., et al. (1999). Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: Histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. European Journal of Neuroscience, 11, 2551–2565.PubMedCrossRef Wevers, A., Monteggia, L., Nowacki, S., et al. (1999). Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: Histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. European Journal of Neuroscience, 11, 2551–2565.PubMedCrossRef
go back to reference Wevers, A., Burghaus, L., Moser, N., et al. (2000). Expression of nicotinic acetylcholine receptors in Alzheimer’s disease: Postmortem investigations and experimental approaches. Behavioural Brain Research, 113, 207–215.PubMedCrossRef Wevers, A., Burghaus, L., Moser, N., et al. (2000). Expression of nicotinic acetylcholine receptors in Alzheimer’s disease: Postmortem investigations and experimental approaches. Behavioural Brain Research, 113, 207–215.PubMedCrossRef
go back to reference Woolf, N. J. (1991). Cholinergic systems in mammalian brain and spinal cord. Progress in Neurobiology, 37, 475–524.PubMedCrossRef Woolf, N. J. (1991). Cholinergic systems in mammalian brain and spinal cord. Progress in Neurobiology, 37, 475–524.PubMedCrossRef
go back to reference Wright, S., Malinin, N. L., Powell, K. A., Yednock, T., Rydel, R. E., & Griswold-Prenner, I. (2007). Alpha2beta1 and alphaVbeta1 integrin signaling pathways mediate amyloid-beta-induced neurotoxicity. Neurobiology of Aging, 28, 226–237.PubMedCrossRef Wright, S., Malinin, N. L., Powell, K. A., Yednock, T., Rydel, R. E., & Griswold-Prenner, I. (2007). Alpha2beta1 and alphaVbeta1 integrin signaling pathways mediate amyloid-beta-induced neurotoxicity. Neurobiology of Aging, 28, 226–237.PubMedCrossRef
go back to reference Wrighton, D. C., Baker, E. J., Chen, P. E., & Wyllie, D. J. A. (2008). Mg2+ and memantine block of rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. Journal of Physiology, 586, 211–225.PubMedCrossRef Wrighton, D. C., Baker, E. J., Chen, P. E., & Wyllie, D. J. A. (2008). Mg2+ and memantine block of rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. Journal of Physiology, 586, 211–225.PubMedCrossRef
go back to reference Wu, J., Anwyl, R., & Rowan, M. J. (1995a). Beta-amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. NeuroReport, 6, 2409–2413.PubMedCrossRef Wu, J., Anwyl, R., & Rowan, M. J. (1995a). Beta-amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. NeuroReport, 6, 2409–2413.PubMedCrossRef
go back to reference Wu, J., Anwyl, R., & Rowan, M. J. (1995b). Beta-amyloid-(1-40) increases long-term potentiation in rat hippocampus in vitro. European Journal of Pharmacology, 284, R1–R3.PubMedCrossRef Wu, J., Anwyl, R., & Rowan, M. J. (1995b). Beta-amyloid-(1-40) increases long-term potentiation in rat hippocampus in vitro. European Journal of Pharmacology, 284, R1–R3.PubMedCrossRef
go back to reference Wu, M. N., He, Y. X., Guo, F., & Qi, J. S. (2008). Alpha4beta2 nicotinic acetylcholine receptors are required for the amyloid beta protein-induced suppression of long-term potentiation in rat hippocampal CA1 region in vivo. Brain Research Bulletin, 77, 84–90.PubMedCrossRef Wu, M. N., He, Y. X., Guo, F., & Qi, J. S. (2008). Alpha4beta2 nicotinic acetylcholine receptors are required for the amyloid beta protein-induced suppression of long-term potentiation in rat hippocampal CA1 region in vivo. Brain Research Bulletin, 77, 84–90.PubMedCrossRef
go back to reference Yamazaki, Y., Hamaue, N., & Sumikawa, K. (2002). Nicotine compensates for the loss of cholinergic function to enhance long-term potentiation induction. Brain Research, 946, 148–152.PubMedCrossRef Yamazaki, Y., Hamaue, N., & Sumikawa, K. (2002). Nicotine compensates for the loss of cholinergic function to enhance long-term potentiation induction. Brain Research, 946, 148–152.PubMedCrossRef
go back to reference Yan, S. D., Bierhaus, A., Nawroth, P. P., & Stern, D. M. (2009). RAGE and Alzheimer’s disease: A progression factor for amyloid-beta-induced cellular perturbation? Journal of Alzheimers Disease, 16, 833–843. Yan, S. D., Bierhaus, A., Nawroth, P. P., & Stern, D. M. (2009). RAGE and Alzheimer’s disease: A progression factor for amyloid-beta-induced cellular perturbation? Journal of Alzheimers Disease, 16, 833–843.
go back to reference Yang, T., Knowles, J. K., Lu, Q., et al. (2008). Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS ONE, 3, e3604.PubMedCrossRef Yang, T., Knowles, J. K., Lu, Q., et al. (2008). Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS ONE, 3, e3604.PubMedCrossRef
go back to reference Ye, C., Walsh, D. M., Selkoe, D. J., & Hartley, D. M. (2004). Amyloid beta-protein induced electrophysiological changes are dependent on aggregation state: N-methyl-D-aspartate (NMDA) versus non-NMDA receptor/channel activation. Neuroscience Letters, 366, 320–325.PubMedCrossRef Ye, C., Walsh, D. M., Selkoe, D. J., & Hartley, D. M. (2004). Amyloid beta-protein induced electrophysiological changes are dependent on aggregation state: N-methyl-D-aspartate (NMDA) versus non-NMDA receptor/channel activation. Neuroscience Letters, 366, 320–325.PubMedCrossRef
go back to reference Zajaczkowski, W., Frankiewicz, T., Parsons, C. G., & Danysz, W. (1997). Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP. Neuropharmacology, 36, 961–971.PubMedCrossRef Zajaczkowski, W., Frankiewicz, T., Parsons, C. G., & Danysz, W. (1997). Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP. Neuropharmacology, 36, 961–971.PubMedCrossRef
go back to reference Zhang, S. J., Steijaert, M. N., Lau, D., et al. (2007). Decoding NMDA receptor signaling: Identification of genomic programs specifying neuronal survival and death. Neuron, 53, 549–562.PubMedCrossRef Zhang, S. J., Steijaert, M. N., Lau, D., et al. (2007). Decoding NMDA receptor signaling: Identification of genomic programs specifying neuronal survival and death. Neuron, 53, 549–562.PubMedCrossRef
go back to reference Zheng, H., Jiang, M., Trumbauer, M. E., et al. (1995). Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell, 81, 525–531.PubMedCrossRef Zheng, H., Jiang, M., Trumbauer, M. E., et al. (1995). Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell, 81, 525–531.PubMedCrossRef
go back to reference Zorumski, C. F., & Izumi, Y. (1998). Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Progress in Brain Research, 118, 173–182.PubMedCrossRef Zorumski, C. F., & Izumi, Y. (1998). Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Progress in Brain Research, 118, 173–182.PubMedCrossRef
Metadata
Title
Alzheimer’s Disease Amyloid β-Protein and Synaptic Function
Authors
Tomas Ondrejcak
Igor Klyubin
Neng-Wei Hu
Andrew E. Barry
William K. Cullen
Michael J. Rowan
Publication date
01-03-2010
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 1/2010
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-009-8091-0

Other articles of this Issue 1/2010

NeuroMolecular Medicine 1/2010 Go to the issue