Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Aluminum concentrations in central and peripheral areas of malignant breast lesions do not differ from those in normal breast tissues

Authors: Raquel Mary Rodrigues-Peres, Solange Cadore, Stefanny Febraio, Juliana Karina Heinrich, Katia Piton Serra, Sophie F M Derchain, Jose Vassallo, Luis Otavio Sarian

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Aluminum is used in a wide range of applications and is a potential environmental hazard. The known genotoxic effects of aluminum might play a role in the development of breast cancer. However, the data currently available on the subject are not sufficient to establish a causal relationship between aluminum exposure and the augmented risk of developing breast cancer. To achieve maximum sensitivity and specificity in the determination of aluminum levels, we have developed a detection protocol using graphite furnace atomic absorption spectrometry (GFAAS). The objective of the present study was to compare the aluminum levels in the central and peripheral areas of breast carcinomas with those in the adjacent normal breast tissues, and to identify patient and/or tumor characteristics associated with these aluminum levels.

Methods

A total of 176 patients with breast cancer were included in the study. Samples from the central and peripheral areas of their tumors were obtained, as well as from the surrounding normal breast tissue. Aluminum quantification was performed using GFAAS.

Results

The average (mean ± SD) aluminum concentrations were as follows: central area, 1.88 ± 3.60 mg/kg; peripheral area, 2.10 ± 5.67 mg/kg; and normal area, 1.68 ± 11.1 mg/kg. Overall and two-by-two comparisons of the aluminum concentrations in these areas indicated no significant differences. We detected a positive relationship between aluminum levels in the peripheral areas of the tumors, age and menopausal status of the patients (P = .02).

Conclusions

Using a sensitive quantification technique we detected similar aluminum concentrations in the central and peripheral regions of breast tumors, and in normal tissues. In addition, we did not detect significant differences in aluminum concentrations as related to the location of the breast tumor within the breast, or to other relevant tumor features such as stage, size and steroid receptor status. The next logical step is the assessment of whether the aluminum concentration is related to the key genomic abnormalities associated with breast carcinogenesis.
Appendix
Available only for authorised users
Literature
2.
go back to reference McGrath KG: An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. Eur J Cancer Prev. 2003, 12: 479-485. 10.1097/00008469-200312000-00006.CrossRefPubMed McGrath KG: An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. Eur J Cancer Prev. 2003, 12: 479-485. 10.1097/00008469-200312000-00006.CrossRefPubMed
3.
go back to reference Ellsworth DL, Ellsworth RE, Love B, Deyarmin B, Lubert SM, Mittal V: Outer breast quadrants demonstrate increased levels of genomic instability. Ann Surg Oncol. 2004, 11 (9): 861-868. 10.1245/ASO.2004.03.024.CrossRefPubMed Ellsworth DL, Ellsworth RE, Love B, Deyarmin B, Lubert SM, Mittal V: Outer breast quadrants demonstrate increased levels of genomic instability. Ann Surg Oncol. 2004, 11 (9): 861-868. 10.1245/ASO.2004.03.024.CrossRefPubMed
4.
go back to reference Exley C, Charles LM, Barr L, Martin C, Polwart A, Darbre PD: Aluminium in human breast tissue. J Inorg Biochem. 2007, 101: 1344-1346. 10.1016/j.jinorgbio.2007.06.005.CrossRefPubMed Exley C, Charles LM, Barr L, Martin C, Polwart A, Darbre PD: Aluminium in human breast tissue. J Inorg Biochem. 2007, 101: 1344-1346. 10.1016/j.jinorgbio.2007.06.005.CrossRefPubMed
5.
go back to reference Platt B, Fiddler G, Riedel G, Henderson Z: Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull. 2001, 55 (2): 257-267. 10.1016/S0361-9230(01)00511-1.CrossRefPubMed Platt B, Fiddler G, Riedel G, Henderson Z: Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull. 2001, 55 (2): 257-267. 10.1016/S0361-9230(01)00511-1.CrossRefPubMed
6.
go back to reference Lukiw WJ, Percy ME, Kruck TP: Nanomolar aluminium induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem. 2005, 99: 1895-1898. 10.1016/j.jinorgbio.2005.04.021.CrossRefPubMed Lukiw WJ, Percy ME, Kruck TP: Nanomolar aluminium induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem. 2005, 99: 1895-1898. 10.1016/j.jinorgbio.2005.04.021.CrossRefPubMed
7.
go back to reference Darbre PD: Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006, 26: 191-197. 10.1002/jat.1135.CrossRefPubMed Darbre PD: Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006, 26: 191-197. 10.1002/jat.1135.CrossRefPubMed
8.
go back to reference McGrath KG: Apocrine sweat gland obstruction by antiperspirants allowing transdermal absorption of cutaneous generated hormones and pheromones as a link to the observed incidence rates of breast and prostate cancer in the 20th century. Med Hypothesis. 2009, 72: 665-674. 10.1016/j.mehy.2009.01.025.CrossRef McGrath KG: Apocrine sweat gland obstruction by antiperspirants allowing transdermal absorption of cutaneous generated hormones and pheromones as a link to the observed incidence rates of breast and prostate cancer in the 20th century. Med Hypothesis. 2009, 72: 665-674. 10.1016/j.mehy.2009.01.025.CrossRef
9.
go back to reference Namer M, Luporsi E, Gligorov J, Lokiec F, Spielmann M: L’utilisation de déodorants/antitranspirants ne constitue pas un risque de cancer du sein. Bull Cancer. 2008, 95 (9): 871-880.PubMed Namer M, Luporsi E, Gligorov J, Lokiec F, Spielmann M: L’utilisation de déodorants/antitranspirants ne constitue pas un risque de cancer du sein. Bull Cancer. 2008, 95 (9): 871-880.PubMed
10.
go back to reference Pasha Q, Malik SA, Iqbal J, Shaheen N, Shah MH: Investigation of trace metals in the blood plasma and scalp hair of gastrointestinal cancer patients in comparison with controls. Clin Chim Acta. 2010, 411: 531-539. 10.1016/j.cca.2010.01.010.CrossRefPubMed Pasha Q, Malik SA, Iqbal J, Shaheen N, Shah MH: Investigation of trace metals in the blood plasma and scalp hair of gastrointestinal cancer patients in comparison with controls. Clin Chim Acta. 2010, 411: 531-539. 10.1016/j.cca.2010.01.010.CrossRefPubMed
11.
go back to reference Carvalho ML, Magalhães T, Becker M, von Bohlen A: Trace elements in human cancerous and healthy tissues: a comparative study by EDXRF, TXRF, synchrotron radiation and PIXE. Spectrochimica Acta Part B. 2007, 62: 1004-1011. 10.1016/j.sab.2007.03.030.CrossRef Carvalho ML, Magalhães T, Becker M, von Bohlen A: Trace elements in human cancerous and healthy tissues: a comparative study by EDXRF, TXRF, synchrotron radiation and PIXE. Spectrochimica Acta Part B. 2007, 62: 1004-1011. 10.1016/j.sab.2007.03.030.CrossRef
12.
go back to reference Millos J, Costas-Rodríguez M, Lavilla I, Bendicho C: Multielemental determination in breast cancerous and non-cancerous biopsies by inductively coupled plasma-mass spectrometry following small volume microwave-assisted digestion. Anal Chimica Acta. 2008, 622: 77-84. 10.1016/j.aca.2008.05.066.CrossRef Millos J, Costas-Rodríguez M, Lavilla I, Bendicho C: Multielemental determination in breast cancerous and non-cancerous biopsies by inductively coupled plasma-mass spectrometry following small volume microwave-assisted digestion. Anal Chimica Acta. 2008, 622: 77-84. 10.1016/j.aca.2008.05.066.CrossRef
13.
go back to reference Siddiqui MKJ, Jyoti SS, Mehrotra PK, Singh K, Sarangi R: Comparison of some trace elements concentration in blood, tumor free breast and tumor tissues of women with benign and malignant breast lesions: an Indian study. Environ Int. 2006, 32: 630-637. 10.1016/j.envint.2006.02.002.CrossRefPubMed Siddiqui MKJ, Jyoti SS, Mehrotra PK, Singh K, Sarangi R: Comparison of some trace elements concentration in blood, tumor free breast and tumor tissues of women with benign and malignant breast lesions: an Indian study. Environ Int. 2006, 32: 630-637. 10.1016/j.envint.2006.02.002.CrossRefPubMed
14.
go back to reference Santos MC, Sousa RA, Cadore S, Nóbrega JA, Barnes R, Tatro M: Sample preparation in alkaline medium. Spectr Acta, Part B. 2006, 61: 465-495. 10.1016/j.sab.2006.02.006.CrossRef Santos MC, Sousa RA, Cadore S, Nóbrega JA, Barnes R, Tatro M: Sample preparation in alkaline medium. Spectr Acta, Part B. 2006, 61: 465-495. 10.1016/j.sab.2006.02.006.CrossRef
15.
16.
go back to reference Mirick DK, Davia S, Thomas DB: Antiperspirant use and the risk of breast cancer. J Nat Cancer Inst. 2002, 94 (20): 1578-1580. 10.1093/jnci/94.20.1578.CrossRefPubMed Mirick DK, Davia S, Thomas DB: Antiperspirant use and the risk of breast cancer. J Nat Cancer Inst. 2002, 94 (20): 1578-1580. 10.1093/jnci/94.20.1578.CrossRefPubMed
17.
go back to reference Fakri S, Al-Azzawi A, Al-Tawil N: Antiperspirant use as a risk factor for breast cancer in Iraq. East Medit Health J. 2006, 12 (3/4): 478-482. Fakri S, Al-Azzawi A, Al-Tawil N: Antiperspirant use as a risk factor for breast cancer in Iraq. East Medit Health J. 2006, 12 (3/4): 478-482.
18.
go back to reference K-H NG, Bradley DA, Looi L-M: Elevated trace element concentrations in malignant breast tissues. Br J Radiol. 1997, 70: 375-382.CrossRef K-H NG, Bradley DA, Looi L-M: Elevated trace element concentrations in malignant breast tissues. Br J Radiol. 1997, 70: 375-382.CrossRef
19.
go back to reference Pasha Q, Malik SA, Iqbal J, Shaheen N, Shah MH: Comparative evaluation of trace metal distribution and correlation in human malignant and benign breast tissues. Biol Trace El Res. 2008, 125: 30-40. 10.1007/s12011-008-8158-z.CrossRef Pasha Q, Malik SA, Iqbal J, Shaheen N, Shah MH: Comparative evaluation of trace metal distribution and correlation in human malignant and benign breast tissues. Biol Trace El Res. 2008, 125: 30-40. 10.1007/s12011-008-8158-z.CrossRef
20.
go back to reference Romanowicz-Makowska H, Forma E, Bryś M, Krajewska WM, Smolarz B: Concentration of cadmium, nickel and aluminium in female breast cancer. Pol J Pathol. 2011, 62 (4): 257-261.PubMed Romanowicz-Makowska H, Forma E, Bryś M, Krajewska WM, Smolarz B: Concentration of cadmium, nickel and aluminium in female breast cancer. Pol J Pathol. 2011, 62 (4): 257-261.PubMed
21.
go back to reference Manello F, Tonti GA, Medda V, Simone P, Darbre PD: Analysis of aluminium content and iron homeostasis in nipple aspirate fluids from healthy women and breast cancer-affected patients. J Appl Toxicol. 2011, 31: 262-269. 10.1002/jat.1641.CrossRef Manello F, Tonti GA, Medda V, Simone P, Darbre PD: Analysis of aluminium content and iron homeostasis in nipple aspirate fluids from healthy women and breast cancer-affected patients. J Appl Toxicol. 2011, 31: 262-269. 10.1002/jat.1641.CrossRef
22.
go back to reference Darbre PD: Aluminium, antiperspirants and breast cancer. J Inorg Biochem. 2005, 99: 1912-1919. 10.1016/j.jinorgbio.2005.06.001.CrossRefPubMed Darbre PD: Aluminium, antiperspirants and breast cancer. J Inorg Biochem. 2005, 99: 1912-1919. 10.1016/j.jinorgbio.2005.06.001.CrossRefPubMed
23.
go back to reference Rowatt E, Sorensen ES, Triffit J, Viess A, Williams RJP: An examination of the binding of aluminum to protein and mineral components of bone and teeth. J Inorg Biochem. 1997, 68 (4): 235-238. 10.1016/S0162-0134(97)00088-3.CrossRefPubMed Rowatt E, Sorensen ES, Triffit J, Viess A, Williams RJP: An examination of the binding of aluminum to protein and mineral components of bone and teeth. J Inorg Biochem. 1997, 68 (4): 235-238. 10.1016/S0162-0134(97)00088-3.CrossRefPubMed
24.
go back to reference Baker R, Rogers KD, Shepherd N, Stone N: New relationships between breast microcalcifications and cancer. Br J Cancer. 2010, 103: 1034-1039. 10.1038/sj.bjc.6605873.CrossRefPubMedPubMedCentral Baker R, Rogers KD, Shepherd N, Stone N: New relationships between breast microcalcifications and cancer. Br J Cancer. 2010, 103: 1034-1039. 10.1038/sj.bjc.6605873.CrossRefPubMedPubMedCentral
Metadata
Title
Aluminum concentrations in central and peripheral areas of malignant breast lesions do not differ from those in normal breast tissues
Authors
Raquel Mary Rodrigues-Peres
Solange Cadore
Stefanny Febraio
Juliana Karina Heinrich
Katia Piton Serra
Sophie F M Derchain
Jose Vassallo
Luis Otavio Sarian
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-104

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine