Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2011

01-08-2011 | Original Article

Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction

Authors: Daniel D. Anselm, BASc, Anjali H. Anselm, MD, Jennifer Renaud, MSc, Harold L. Atkins, MD, Robert de Kemp, PhD, Ian G. Burwash, MD, Kathryn A. Williams, MSc, Ann Guo, MEng, Cathy Kelly, RN, Jean DaSilva, PhD, Rob S. B. Beanlands, MD, Christopher A. Glover, MD

Published in: Journal of Nuclear Cardiology | Issue 4/2011

Login to get access

Abstract

Background

Reperfused myocardium post-acute myocardial infarction (AMI) may have altered metabolism with implications for therapy response and function recovery. We explored glucose utilization and the “reverse mismatch” (RMM) pattern (decreased F-18-fluorodeoxyglucose (FDG) uptake relative to perfusion) in patients who underwent mechanical reperfusion with percutaneous coronary intervention (PCI) for AMI.

Methods and Results

Thirty-one patients with anterior wall AMI treated with acute reperfusion, with left ventricular ejection fraction ≤45%, underwent rest rubidium-82 (Rb-82) and FDG PET 2-10 days post-AMI. Resting echocardiograms were used to assess wall motion abnormalities. Significant RMM occurred in 15 (48%) patients and was associated with a shorter time to PCI of 2.9 hours (2.2, 13.3 hours) compared to patients without significant RMM: 11.4 hours (3.9, 22.4 hours) (P = .03). Within the peri-infarct regions, segments with significant RMM were more likely to have wall motion abnormalities (OR = 2.3 (1.1, 4.7), P = .02) compared to segments without significant RMM.

Conclusions

RMM is a common pattern on perfusion/FDG PET during the sub-acute phase following reperfusion of AMI and is associated with shorter times to PCI. Within the peri-infarct region, RMM occurs frequently and is more often associated with wall motion abnormalities than segments without RMM. Whether this represents a myocardial metabolic shift during the sub-acute phase of recovery warrants further study.
Literature
1.
go back to reference Antman EM, Hand M, Armstrong PW, et al. 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 2008;117:296-329.PubMedCrossRef Antman EM, Hand M, Armstrong PW, et al. 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 2008;117:296-329.PubMedCrossRef
2.
go back to reference Schluter KD, Maxeiner H, Wenzel S. Mechanisms that regulate homing function of progenitor cells in myocardial infarction. Minerva Cardioangiol 2009;57:203-17.PubMed Schluter KD, Maxeiner H, Wenzel S. Mechanisms that regulate homing function of progenitor cells in myocardial infarction. Minerva Cardioangiol 2009;57:203-17.PubMed
3.
go back to reference Ince H, Nienaber CA. Future investigations in stem cell activation with granulocyte-colony-stimulating factor after myocardial infarction. Nat Clin Pract Cardiovasc Med 2007;4:S119-22.PubMedCrossRef Ince H, Nienaber CA. Future investigations in stem cell activation with granulocyte-colony-stimulating factor after myocardial infarction. Nat Clin Pract Cardiovasc Med 2007;4:S119-22.PubMedCrossRef
4.
go back to reference Zohlnhofer D, Kastrati A, Schomig A. Stem cell mobilization by granulocyte-colony-stimulating factor in acute myocardial infarction: Lessons from the REVIVAL-2 trial. Nat Clin Pract Cardiovasc Med 2007;4:S106-9.PubMedCrossRef Zohlnhofer D, Kastrati A, Schomig A. Stem cell mobilization by granulocyte-colony-stimulating factor in acute myocardial infarction: Lessons from the REVIVAL-2 trial. Nat Clin Pract Cardiovasc Med 2007;4:S106-9.PubMedCrossRef
5.
go back to reference Takano H, Qin Y, Hasegawa H, et al. Effects of G-CSF on left ventricular remodeling and heart failure after acute myocardial infarction. J Mol Med 2006;84:185-93.PubMedCrossRef Takano H, Qin Y, Hasegawa H, et al. Effects of G-CSF on left ventricular remodeling and heart failure after acute myocardial infarction. J Mol Med 2006;84:185-93.PubMedCrossRef
6.
go back to reference Herrmann HC. Update and rationale for ongoing acute myocardial infarction trials: Combination therapy, facilitation, and myocardial preservation. Am Heart J 2006;151:S30-9.PubMedCrossRef Herrmann HC. Update and rationale for ongoing acute myocardial infarction trials: Combination therapy, facilitation, and myocardial preservation. Am Heart J 2006;151:S30-9.PubMedCrossRef
7.
go back to reference Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol 2009;54:1-15.PubMedCrossRef Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol 2009;54:1-15.PubMedCrossRef
8.
go back to reference Schinkel AF, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med 2007;48:1135-46.PubMedCrossRef Schinkel AF, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med 2007;48:1135-46.PubMedCrossRef
9.
go back to reference Beanlands RS, Chow BJ, Dick A, et al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease—executive summary. Can J Cardiol 2007;23:107-19.PubMedCrossRef Beanlands RS, Chow BJ, Dick A, et al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease—executive summary. Can J Cardiol 2007;23:107-19.PubMedCrossRef
10.
go back to reference Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation 2008;117:103-14.PubMedCrossRef Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation 2008;117:103-14.PubMedCrossRef
11.
go back to reference Perrone-Filardi P, Bacharach SL, Dilsizian V, et al. Clinical significance of reduced regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23:608-16.PubMedCrossRef Perrone-Filardi P, Bacharach SL, Dilsizian V, et al. Clinical significance of reduced regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23:608-16.PubMedCrossRef
12.
go back to reference Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 1999;40:1492-8.PubMed Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 1999;40:1492-8.PubMed
13.
go back to reference Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern: A new marker of viable myocardium with greater contractility during dobutamine stress than myocardium with a flow-metabolism mismatch pattern. Jpn Circ J 2000;64:659-66.PubMedCrossRef Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern: A new marker of viable myocardium with greater contractility during dobutamine stress than myocardium with a flow-metabolism mismatch pattern. Jpn Circ J 2000;64:659-66.PubMedCrossRef
14.
go back to reference Zanco P, Desideri A, Mobilia G, et al. Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med 2000;41:973-7.PubMed Zanco P, Desideri A, Mobilia G, et al. Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med 2000;41:973-7.PubMed
15.
go back to reference Mesotten L, Dispersyn GD, Maes A, et al. PET reversed mismatch in an experimental model of subacute myocardial infarction. Eur J Nucl Med 2001;28:457-65.PubMedCrossRef Mesotten L, Dispersyn GD, Maes A, et al. PET reversed mismatch in an experimental model of subacute myocardial infarction. Eur J Nucl Med 2001;28:457-65.PubMedCrossRef
16.
go back to reference Mesotten L, Maes A, Herregods M, et al. PET “reversed mismatch pattern” early after acute myocardial infarction: Follow-up of flow, metabolism and function. Eur J Nucl Med 2001;28:466-71.PubMedCrossRef Mesotten L, Maes A, Herregods M, et al. PET “reversed mismatch pattern” early after acute myocardial infarction: Follow-up of flow, metabolism and function. Eur J Nucl Med 2001;28:466-71.PubMedCrossRef
17.
go back to reference Terlizzi R, Suzzi G, Zanco P, et al. Evidence of reverse mismatch with positron emission tomography imaging in a patient with reversible myocardial dysfunction. Ital Heart J 2002;3:611-4.PubMed Terlizzi R, Suzzi G, Zanco P, et al. Evidence of reverse mismatch with positron emission tomography imaging in a patient with reversible myocardial dysfunction. Ital Heart J 2002;3:611-4.PubMed
18.
go back to reference Nowak B, Sinha AM, Schafer WM, et al. Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 2003;41:1523-8.PubMedCrossRef Nowak B, Sinha AM, Schafer WM, et al. Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 2003;41:1523-8.PubMedCrossRef
19.
go back to reference Thompson K, Saab G, Birnie D, et al. Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy? J Nucl Med 2006;47:1763-8.PubMed Thompson K, Saab G, Birnie D, et al. Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy? J Nucl Med 2006;47:1763-8.PubMed
20.
go back to reference Glover C, Beanlands R, deKemp R, Garrard L, Mostert K, Atkins H. Stem Cell Mobilization by G-CSF Post Myocardial Infarction to Promote Myocyte Regeneration. Circulation 2003;108: abstract 2289 Glover C, Beanlands R, deKemp R, Garrard L, Mostert K, Atkins H. Stem Cell Mobilization by G-CSF Post Myocardial Infarction to Promote Myocyte Regeneration. Circulation 2003;108: abstract 2289
21.
go back to reference Machac J, Bacharach SL, Bateman TM, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2006;13:e121-51.PubMedCrossRef Machac J, Bacharach SL, Bateman TM, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2006;13:e121-51.PubMedCrossRef
22.
go back to reference Dilsizian V, Bacharach SL, Beanlands RS, et al. (2009) ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 16. doi:10.1007/s12350-009-9094-9. Dilsizian V, Bacharach SL, Beanlands RS, et al. (2009) ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 16. doi:10.​1007/​s12350-009-9094-9.
23.
go back to reference Klein R, Adler A, Beanlands RS, de Kemp RA. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659-73.PubMedCrossRef Klein R, Adler A, Beanlands RS, de Kemp RA. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659-73.PubMedCrossRef
24.
go back to reference Parkash R, de Kemp RA, Ruddy TD, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.PubMedCrossRef Parkash R, de Kemp RA, Ruddy TD, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.PubMedCrossRef
25.
go back to reference Beanlands RSB, Ruddy TD, de Kemp RA, et al. Positron emission tomography and recovery following revascularization (PARR-1): The importance of scar and the development of a prediction rule for the degree of recovery of the left ventricular function. J Am Coll Cardiol 2002;40:1735-43.PubMedCrossRef Beanlands RSB, Ruddy TD, de Kemp RA, et al. Positron emission tomography and recovery following revascularization (PARR-1): The importance of scar and the development of a prediction rule for the degree of recovery of the left ventricular function. J Am Coll Cardiol 2002;40:1735-43.PubMedCrossRef
26.
go back to reference Yoshinaga K, Chow BJ, Williams K, et al. What is the prognostic value with rubidium-82 perfusion positron emission tomography imaging? J Am Coll Cardiol 2006;48:1029-39.PubMedCrossRef Yoshinaga K, Chow BJ, Williams K, et al. What is the prognostic value with rubidium-82 perfusion positron emission tomography imaging? J Am Coll Cardiol 2006;48:1029-39.PubMedCrossRef
27.
go back to reference Vitale GD, de Kemp RA, Ruddy TD, Williams K, Beanlands RS. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730-6.PubMed Vitale GD, de Kemp RA, Ruddy TD, Williams K, Beanlands RS. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730-6.PubMed
28.
go back to reference Klein R, Lortie M, Adler A, Beanlands R, de Kemp R. Fully automated software for polar-map registration and sampling from PET images. IEEE Nucl Sci Symp Conf Record 2006;6:3185-8.CrossRef Klein R, Lortie M, Adler A, Beanlands R, de Kemp R. Fully automated software for polar-map registration and sampling from PET images. IEEE Nucl Sci Symp Conf Record 2006;6:3185-8.CrossRef
29.
go back to reference de Kemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron emission tomography. Physiol Meas 1996;17:95-108.CrossRef de Kemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron emission tomography. Physiol Meas 1996;17:95-108.CrossRef
30.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 2002;105:539-42.PubMedCrossRef Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 2002;105:539-42.PubMedCrossRef
31.
go back to reference Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.PubMedCrossRef Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.PubMedCrossRef
32.
go back to reference Haas F, Augustin N, Holper K, et al. Time course and extend of improvement of dysfunctioning myocardium in patients with coronary disease and severely depressed left ventricular function after revascularization: Correlation with positron emission Tomographic findings. J Am Coll Cardiol 2000;36:1927-34.PubMedCrossRef Haas F, Augustin N, Holper K, et al. Time course and extend of improvement of dysfunctioning myocardium in patients with coronary disease and severely depressed left ventricular function after revascularization: Correlation with positron emission Tomographic findings. J Am Coll Cardiol 2000;36:1927-34.PubMedCrossRef
33.
go back to reference Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-Fluorodeosyglucose. Circulation 1991;83:26-37.PubMed Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-Fluorodeosyglucose. Circulation 1991;83:26-37.PubMed
34.
go back to reference Maes A, Van de Werf F, Nuyts J, Bormans G, Desmet W, Mortelmans L. Impaired myocardial tissue perfusion early after successful thrombolysis: Impact on myocardial flow, metabolism, and function at late follow-up. Circulation 1995;92:2072-8.PubMed Maes A, Van de Werf F, Nuyts J, Bormans G, Desmet W, Mortelmans L. Impaired myocardial tissue perfusion early after successful thrombolysis: Impact on myocardial flow, metabolism, and function at late follow-up. Circulation 1995;92:2072-8.PubMed
35.
go back to reference Doenst T, Taegtmeyer H. Profound underestimation of glucose uptake by [18F]2-deoxy-2-fluoroglucose in reperfused rat heart muscle. Circulation 1998;97:2454-62.PubMed Doenst T, Taegtmeyer H. Profound underestimation of glucose uptake by [18F]2-deoxy-2-fluoroglucose in reperfused rat heart muscle. Circulation 1998;97:2454-62.PubMed
36.
go back to reference Schelbert HR, Henze E, Phelps ME, Kuhl DE. Assessment of regional myocardial ischemia by positron-emission computed tomography. Am Heart J 1982;103:588-97.PubMedCrossRef Schelbert HR, Henze E, Phelps ME, Kuhl DE. Assessment of regional myocardial ischemia by positron-emission computed tomography. Am Heart J 1982;103:588-97.PubMedCrossRef
37.
go back to reference Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: What does it mean? J Nucl Med 1999;40:1499-502.PubMed Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: What does it mean? J Nucl Med 1999;40:1499-502.PubMed
38.
go back to reference Lear JL. Relationship between myocardial clearance rates of carbon-11-acetate-derived radiolabel and oxidative metabolism: Physiologic basis and clinical significance. J Nucl Med 1991;32:1957-60.PubMed Lear JL. Relationship between myocardial clearance rates of carbon-11-acetate-derived radiolabel and oxidative metabolism: Physiologic basis and clinical significance. J Nucl Med 1991;32:1957-60.PubMed
39.
go back to reference Wallhaus TR, Taylor M, DeGrado TR, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001;103:2441-6.PubMed Wallhaus TR, Taylor M, DeGrado TR, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001;103:2441-6.PubMed
40.
go back to reference Altehoefer C, vom Dahl J, Bares R, Stocklin GL, Buell U. Metabolic mismatch of septal beta-oxidation and glucose utilization in left bundle branch block assessed with PET. J Nucl Med 1995;36:2056-9.PubMed Altehoefer C, vom Dahl J, Bares R, Stocklin GL, Buell U. Metabolic mismatch of septal beta-oxidation and glucose utilization in left bundle branch block assessed with PET. J Nucl Med 1995;36:2056-9.PubMed
41.
go back to reference Inoue N, Takahashi N, Ishikawa T, et al. Reverse perfusion-metabolism mismatch predicts good prognosis in patients undergoing cardiac resynchronization therapy—a pilot study. Circ J 2007;71:126-31.PubMedCrossRef Inoue N, Takahashi N, Ishikawa T, et al. Reverse perfusion-metabolism mismatch predicts good prognosis in patients undergoing cardiac resynchronization therapy—a pilot study. Circ J 2007;71:126-31.PubMedCrossRef
42.
go back to reference Gropler RJ, Siegel BA, Sampathkumaran K, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 1992;19:989-97.PubMedCrossRef Gropler RJ, Siegel BA, Sampathkumaran K, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 1992;19:989-97.PubMedCrossRef
43.
go back to reference Peterson LR, Gropler RJ. Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging 2010;3:211-22.PubMedCrossRef Peterson LR, Gropler RJ. Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging 2010;3:211-22.PubMedCrossRef
44.
go back to reference Ha AC, Renaud JM, Dekemp RA, Thorn S, Dasilva J, Garrard L, et al. In vivo assessment of myocardial glucose uptake by positron emission tomography in adults with the PRKAG2 cardiac syndrome. Circ Cardiovasc Imaging 2009;2:485-91.PubMedCrossRef Ha AC, Renaud JM, Dekemp RA, Thorn S, Dasilva J, Garrard L, et al. In vivo assessment of myocardial glucose uptake by positron emission tomography in adults with the PRKAG2 cardiac syndrome. Circ Cardiovasc Imaging 2009;2:485-91.PubMedCrossRef
45.
go back to reference Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Depré C, Flameng W, et al. Chronic myocardial hibernation in humans. From bedside to bench. Circulation 1997;95:1961-71.PubMed Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Depré C, Flameng W, et al. Chronic myocardial hibernation in humans. From bedside to bench. Circulation 1997;95:1961-71.PubMed
46.
go back to reference Di Carli MF, Prcevski P, Singh TP, et al. Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med 2000;41:1227-34.PubMed Di Carli MF, Prcevski P, Singh TP, et al. Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med 2000;41:1227-34.PubMed
47.
go back to reference Schwaiger M, Schelbert HR, Ellison D, et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 1985;6:336-47.PubMedCrossRef Schwaiger M, Schelbert HR, Ellison D, et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 1985;6:336-47.PubMedCrossRef
48.
go back to reference Langer A, Burns RJ, Freeman MR, et al. Reverse redistribution on exercise thallium scintigraphy: Relationship to coronary patency and ventricular function after myocardial infarction. Can J Cardiol 1992;8:709-15.PubMed Langer A, Burns RJ, Freeman MR, et al. Reverse redistribution on exercise thallium scintigraphy: Relationship to coronary patency and ventricular function after myocardial infarction. Can J Cardiol 1992;8:709-15.PubMed
49.
go back to reference Dilsizian V, Bateman TM, Bergmann SR, et al. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 2005;112:2169-74.PubMedCrossRef Dilsizian V, Bateman TM, Bergmann SR, et al. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 2005;112:2169-74.PubMedCrossRef
Metadata
Title
Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction
Authors
Daniel D. Anselm, BASc
Anjali H. Anselm, MD
Jennifer Renaud, MSc
Harold L. Atkins, MD
Robert de Kemp, PhD
Ian G. Burwash, MD
Kathryn A. Williams, MSc
Ann Guo, MEng
Cathy Kelly, RN
Jean DaSilva, PhD
Rob S. B. Beanlands, MD
Christopher A. Glover, MD
Publication date
01-08-2011
Publisher
Springer-Verlag
Published in
Journal of Nuclear Cardiology / Issue 4/2011
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-011-9389-5

Other articles of this Issue 4/2011

Journal of Nuclear Cardiology 4/2011 Go to the issue