Skip to main content
Top
Published in: Neurological Sciences 11/2015

01-11-2015 | Original Article

Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis

Authors: Xujing Ma, Jiuquan Zhang, Youxue Zhang, Heng Chen, Rong Li, Jian Wang, Huafu Chen

Published in: Neurological Sciences | Issue 11/2015

Login to get access

Abstract

Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.
Literature
1.
go back to reference Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955CrossRefPubMed Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955CrossRefPubMed
3.
go back to reference Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003CrossRefPubMed Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003CrossRefPubMed
4.
go back to reference Abrahams S, Goldstein L, Simmons A, Brammer M, Williams S, Giampietro V et al (2004) Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain J Neurol 127:1507–1517CrossRef Abrahams S, Goldstein L, Simmons A, Brammer M, Williams S, Giampietro V et al (2004) Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain J Neurol 127:1507–1517CrossRef
5.
go back to reference Stanton BR, Williams VC, Leigh PN, Williams SC, Blain CR, Jarosz JM et al (2007) Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol 254:1260–1267CrossRefPubMed Stanton BR, Williams VC, Leigh PN, Williams SC, Blain CR, Jarosz JM et al (2007) Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol 254:1260–1267CrossRefPubMed
6.
go back to reference Kew J, Goldstein L, Leigh P, Abrahams S, Cosgrave N, Passingham R et al (1993) The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis A neuropsychological and positron emission tomography study. Brain J Neurol 116:1399–1423CrossRef Kew J, Goldstein L, Leigh P, Abrahams S, Cosgrave N, Passingham R et al (1993) The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis A neuropsychological and positron emission tomography study. Brain J Neurol 116:1399–1423CrossRef
7.
go back to reference Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z et al (2013) Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 146:401–406.CrossRefPubMed Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z et al (2013) Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 146:401–406.CrossRefPubMed
8.
go back to reference Liu F, Hu M, Wang S, Guo W, Zhao J, Li J et al (2012) Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 39: 326–331CrossRefPubMed Liu F, Hu M, Wang S, Guo W, Zhao J, Li J et al (2012) Abnormal regional spontaneous neural activity in first-episode, treatment-naive patients with late-life depression: a resting-state fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 39: 326–331CrossRefPubMed
9.
go back to reference Liu F, Xie B, Wang Y, Guo W, Fouche JP, Long Z et al (2015) Characterization of post-traumatic stress disorder using resting-state fMRI with a multilevel parametric classification approach. Brain Topogr 28: 221–237CrossRef Liu F, Xie B, Wang Y, Guo W, Fouche JP, Long Z et al (2015) Characterization of post-traumatic stress disorder using resting-state fMRI with a multilevel parametric classification approach. Brain Topogr 28: 221–237CrossRef
10.
go back to reference Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Munte TF (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217:147–153CrossRefPubMed Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Munte TF (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217:147–153CrossRefPubMed
11.
go back to reference Verstraete E, van den Heuvel MP, Veldink JH, Blanken N, Mandl RC, Hulshoff Pol HE et al (2010) Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 5:e13664PubMedCentralCrossRefPubMed Verstraete E, van den Heuvel MP, Veldink JH, Blanken N, Mandl RC, Hulshoff Pol HE et al (2010) Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 5:e13664PubMedCentralCrossRefPubMed
12.
go back to reference Li M, Wang J, Liu F, Chen H, Lu F, Wu G et al (2015) Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study. Brain Connect 5: 259–265CrossRefPubMed Li M, Wang J, Liu F, Chen H, Lu F, Wu G et al (2015) Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study. Brain Connect 5: 259–265CrossRefPubMed
13.
go back to reference Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72CrossRefPubMed Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72CrossRefPubMed
14.
go back to reference He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H et al (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4:e5226PubMedCentralCrossRefPubMed He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H et al (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4:e5226PubMedCentralCrossRefPubMed
15.
go back to reference Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci USA 110:1929–1934PubMedCentralCrossRefPubMed Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci USA 110:1929–1934PubMedCentralCrossRefPubMed
17.
go back to reference Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299 Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299
18.
go back to reference Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRefPubMed Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554CrossRefPubMed
19.
go back to reference Meyer BU, Röricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369CrossRefPubMed Meyer BU, Röricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369CrossRefPubMed
20.
go back to reference Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21CrossRefPubMed Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci 169:13–21CrossRefPubMed
21.
go back to reference Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H et al (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66:265–267CrossRefPubMed Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H et al (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66:265–267CrossRefPubMed
22.
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed
23.
go back to reference Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13PubMedCentralPubMed Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13PubMedCentralPubMed
24.
go back to reference Liu F, Guo W, Fouche JP, Wang Y, Wang W, Ding J et al (2015) Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct Funct 220: 101-115. Liu F, Guo W, Fouche JP, Wang Y, Wang W, Ding J et al (2015) Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct Funct 220: 101-115.
25.
go back to reference Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A et al (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25–32PubMedCentralCrossRefPubMed Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A et al (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25–32PubMedCentralCrossRefPubMed
28.
go back to reference Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873PubMedCentralCrossRefPubMed Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873PubMedCentralCrossRefPubMed
29.
go back to reference Dai Z, Yan C, Li K, Wang Z, Wang J, Cao M et al (2014) Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s Disease. Cereb Cortex. doi:10.1093/cercor/bhu246 Dai Z, Yan C, Li K, Wang Z, Wang J, Cao M et al (2014) Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s Disease. Cereb Cortex. doi:10.​1093/​cercor/​bhu246
30.
go back to reference Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRefPubMed Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRefPubMed
31.
go back to reference Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinformatics 4:1PubMedCentral Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinformatics 4:1PubMedCentral
32.
go back to reference Bassett DS, Bullmore E (2006) Small-world brain networks. Neurosci 12:512–523 Bassett DS, Bullmore E (2006) Small-world brain networks. Neurosci 12:512–523
33.
go back to reference Kew JJ, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS et al (1993) Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain J Neurol 116(Pt 3):655–680CrossRef Kew JJ, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS et al (1993) Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain J Neurol 116(Pt 3):655–680CrossRef
34.
go back to reference Sgobio C, Trabalza A, Spalloni A, Zona C, Carunchio I, Longone P et al (2008) Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes Brain Behav 7:427–434CrossRefPubMed Sgobio C, Trabalza A, Spalloni A, Zona C, Carunchio I, Longone P et al (2008) Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes Brain Behav 7:427–434CrossRefPubMed
35.
go back to reference Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417CrossRefPubMed Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417CrossRefPubMed
36.
go back to reference Amato N, Riva N, Cursi M, Martins-Silva A, Martinelli V, Comola M et al (2013) Different frontal involvement in ALS and PLS revealed by stroop event-related potentials and reaction times. Front Aging Neurosci 5:82PubMedCentralCrossRefPubMed Amato N, Riva N, Cursi M, Martins-Silva A, Martinelli V, Comola M et al (2013) Different frontal involvement in ALS and PLS revealed by stroop event-related potentials and reaction times. Front Aging Neurosci 5:82PubMedCentralCrossRefPubMed
38.
go back to reference Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012) Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33:1564–1578CrossRefPubMed Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012) Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33:1564–1578CrossRefPubMed
39.
go back to reference Qi Z, Wu X, Wang Z, Zhang N, Dong H, Yao L et al (2010) Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage 50:48–55CrossRefPubMed Qi Z, Wu X, Wang Z, Zhang N, Dong H, Yao L et al (2010) Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage 50:48–55CrossRefPubMed
40.
go back to reference Douaud G, Filippini N, Knight S, Talbot K, Turner MR (2011) Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain J Neurol 134:3470–3479CrossRef Douaud G, Filippini N, Knight S, Talbot K, Turner MR (2011) Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain J Neurol 134:3470–3479CrossRef
41.
go back to reference Turner MR, Osei-Lah AD, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM et al (2005) Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J Neurol Neurosurg Psychiatry 76:1279–1285PubMedCentralCrossRefPubMed Turner MR, Osei-Lah AD, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM et al (2005) Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS. J Neurol Neurosurg Psychiatry 76:1279–1285PubMedCentralCrossRefPubMed
42.
go back to reference Agosta F, Chio A, Cosottini M, De Stefano N, Falini A, Mascalchi M et al (2010) The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR 31:1769–1777CrossRefPubMed Agosta F, Chio A, Cosottini M, De Stefano N, Falini A, Mascalchi M et al (2010) The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR 31:1769–1777CrossRefPubMed
43.
go back to reference du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S et al (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain J Neurol 129:3315–3328CrossRef du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S et al (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain J Neurol 129:3315–3328CrossRef
44.
go back to reference David AS, Gillham RA (1986) Neuropsychological study of motor neuron disease. Psychosomatics 27:441–445CrossRefPubMed David AS, Gillham RA (1986) Neuropsychological study of motor neuron disease. Psychosomatics 27:441–445CrossRefPubMed
45.
go back to reference Strong MJ, Grace G, Orange J, Leeper H, Menon R, Aere C (1999) A prospective study of cognitive impairment in ALS. Neurology 53:1665–1670 Strong MJ, Grace G, Orange J, Leeper H, Menon R, Aere C (1999) A prospective study of cognitive impairment in ALS. Neurology 53:1665–1670
46.
go back to reference Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455PubMedCentralCrossRefPubMed Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455PubMedCentralCrossRefPubMed
47.
go back to reference Frank B, Haas J, Heinze HJ, Stark E, Munte TF (1997) Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg 99:79–86CrossRefPubMed Frank B, Haas J, Heinze HJ, Stark E, Munte TF (1997) Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clin Neurol Neurosurg 99:79–86CrossRefPubMed
48.
go back to reference Tedeschi G, Trojsi F, Tessitore A, Corbo D, Sagnelli A, Paccone A et al (2012) Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol Aging 33:886–898CrossRefPubMed Tedeschi G, Trojsi F, Tessitore A, Corbo D, Sagnelli A, Paccone A et al (2012) Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol Aging 33:886–898CrossRefPubMed
49.
go back to reference Abrahams S, Goldstein LH, Kew JJ, Brooks DJ, Lloyd CM, Frith CD et al (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain J Neurol 119(Pt 6):2105–2120CrossRef Abrahams S, Goldstein LH, Kew JJ, Brooks DJ, Lloyd CM, Frith CD et al (1996) Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain J Neurol 119(Pt 6):2105–2120CrossRef
50.
go back to reference He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341–350PubMed He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341–350PubMed
51.
go back to reference Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331CrossRefPubMed Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331CrossRefPubMed
Metadata
Title
Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis
Authors
Xujing Ma
Jiuquan Zhang
Youxue Zhang
Heng Chen
Rong Li
Jian Wang
Huafu Chen
Publication date
01-11-2015
Publisher
Springer Milan
Published in
Neurological Sciences / Issue 11/2015
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-015-2319-6

Other articles of this Issue 11/2015

Neurological Sciences 11/2015 Go to the issue