Skip to main content
Top
Published in: Journal of Foot and Ankle Research 1/2015

Open Access 01-12-2015 | Research

Alteration of the foot center of pressure trajectory by an unstable shoe design

Authors: Mona Khoury, Amir Haim, Amir Herman, Nimrod Rozen, Alon Wolf

Published in: Journal of Foot and Ankle Research | Issue 1/2015

Login to get access

Abstract

Background

Unstable sole designs have been used as functional or therapeutic tools for improving body stability during locomotion. It has been suggested that the narrow base of support under the feet generate perturbations that challenge the instability of different joints during motion, thereby forcing the body to modify its movement in order to maintain a stable gait. The purpose of the present study was to explore the correlation between the stability of the footwear-device and the magnitude of perturbation conveyed during gait.

Methods

Various levels of dynamic instability were achieved using a novel foot-worn platform with two adjustable convex rubber elements attached to its sole. A total of 20 healthy male adults underwent direct in-shoe pressure measurements while walking with the footwear device. Foot center of pressure (COP) and stride to stride variability measures were extracted to examine the correlation between the magnitude of the instability and the imposed perturbations during gait.

Results

A counterintuitive but significant correlation was found between stride to stride variability and the instability of the biomechanical elements. Moreover, there was significant correlation between the instability of the elements and the perturbations found in the COP trajectory. The linear model describing this correlation was found to be statistically significant.

Conclusion

There was significantly negative correlation between the level of instability induced by the shoe design and the amount of perturbations conveyed during gait. This suggests that the external perturbation must remain within a certain range limit. Exceeding this limit can negatively affect the treatment and probably lead to opposite results.
Literature
1.
go back to reference Goryachev Y,Debbi EM, Haim A, Rozen N, Wolf A. Foot center of pressure manipulation and gait therapy influence lower limb muscle activation in patients with osteoarthritis of the knee. J Electromyogr Kinesiol. 2011;21(5):704–11.CrossRefPubMed Goryachev Y,Debbi EM, Haim A, Rozen N, Wolf A. Foot center of pressure manipulation and gait therapy influence lower limb muscle activation in patients with osteoarthritis of the knee. J Electromyogr Kinesiol. 2011;21(5):704–11.CrossRefPubMed
2.
go back to reference Goryachev Y ,Debbi EM, Haim A, Wolf A. The effect of manipulation of the center of pressure of the foot during gait on the activation patterns of the lower limb musculature. J Electromyogr Kinesiol. 2011;21(2):333–9.CrossRefPubMed Goryachev Y ,Debbi EM, Haim A, Wolf A. The effect of manipulation of the center of pressure of the foot during gait on the activation patterns of the lower limb musculature. J Electromyogr Kinesiol. 2011;21(2):333–9.CrossRefPubMed
3.
go back to reference Nigg B, Hintzen S, Ferber R. Effect of an unstable shoe construction on lower extremity gait characteristics. Clin Biomech (Bristol, Avon). 2006;21(1):82–8.CrossRef Nigg B, Hintzen S, Ferber R. Effect of an unstable shoe construction on lower extremity gait characteristics. Clin Biomech (Bristol, Avon). 2006;21(1):82–8.CrossRef
4.
go back to reference Debbi EM, Wolf A, Haim A. Detecting and quantifying global instability during a dynamic task using kinetic and kinematic gait parameters. J Biomech. 2012;45(8):1366–71.CrossRefPubMed Debbi EM, Wolf A, Haim A. Detecting and quantifying global instability during a dynamic task using kinetic and kinematic gait parameters. J Biomech. 2012;45(8):1366–71.CrossRefPubMed
5.
go back to reference Haim A, Rubin G, Rozen N, Goryachev Y, Wolf A. Reduction in knee adduction moment via non-invasive biomechanical training: a longitudinal gait analysis study. J Biomech. 2012;45(1):41–5.CrossRefPubMed Haim A, Rubin G, Rozen N, Goryachev Y, Wolf A. Reduction in knee adduction moment via non-invasive biomechanical training: a longitudinal gait analysis study. J Biomech. 2012;45(1):41–5.CrossRefPubMed
6.
go back to reference Fitzgerald GK, Childs JD, Ridge TM, Irrgang JJ. Agility and perturbation training for a physically active individual with knee osteoarthritis. Phys Ther. 2002;82(4):372–82.PubMed Fitzgerald GK, Childs JD, Ridge TM, Irrgang JJ. Agility and perturbation training for a physically active individual with knee osteoarthritis. Phys Ther. 2002;82(4):372–82.PubMed
7.
go back to reference Elbaz A, Mor A, Segal G, Debbi E, Haim A, Halperin N et al. APOS therapy improves clinical measurements and gait in patients with knee osteoarthritis. Clin Biomech (Bristol, Avon). 2010;25(9):920–5.CrossRef Elbaz A, Mor A, Segal G, Debbi E, Haim A, Halperin N et al. APOS therapy improves clinical measurements and gait in patients with knee osteoarthritis. Clin Biomech (Bristol, Avon). 2010;25(9):920–5.CrossRef
8.
go back to reference Erhart JC, Mundermann A, Elspas B, Giori NJ, Andriacchi TP. Changes in knee adduction moment, pain, and functionality with a variable-stiffness walking shoe after 6 months. J Orthop Res. 2010;28(7):873–9.PubMed Erhart JC, Mundermann A, Elspas B, Giori NJ, Andriacchi TP. Changes in knee adduction moment, pain, and functionality with a variable-stiffness walking shoe after 6 months. J Orthop Res. 2010;28(7):873–9.PubMed
9.
go back to reference Roddy E, Zhang W, Doherty M, Arden NK, Barlow J, Birrell F et al.Evidence-based recommendations for the role of exercise in the management of osteoarthritis of the hip or knee–the MOVE consensus. Rheumatology (Oxford). 2005;44(1):67–73.CrossRef Roddy E, Zhang W, Doherty M, Arden NK, Barlow J, Birrell F et al.Evidence-based recommendations for the role of exercise in the management of osteoarthritis of the hip or knee–the MOVE consensus. Rheumatology (Oxford). 2005;44(1):67–73.CrossRef
10.
go back to reference Thorstensson CA, Henriksson M, Von Porat S, Sjodahl C, Roos EM. The effect of eight weeks of exercise on knee adduction moment in early knee osteoarthritis–a pilot study. Osteoarthritis Cartilage. 2007;15(10):1163–70.CrossRefPubMed Thorstensson CA, Henriksson M, Von Porat S, Sjodahl C, Roos EM. The effect of eight weeks of exercise on knee adduction moment in early knee osteoarthritis–a pilot study. Osteoarthritis Cartilage. 2007;15(10):1163–70.CrossRefPubMed
11.
go back to reference Khoury M, Wolf A, Debbi EM, Herman A, Haim A. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design. Foot Ankle Int. 2013;34(4):593–8.CrossRefPubMed Khoury M, Wolf A, Debbi EM, Herman A, Haim A. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design. Foot Ankle Int. 2013;34(4):593–8.CrossRefPubMed
12.
go back to reference Haim A, Wolf A, Rubin G, Genis Y, Khoury M, Rozen N. Effect of center of pressure modulation on knee adduction moment in medial compartment knee osteoarthritis. J Orthop Res. 2011;29(11):1668–74.CrossRefPubMed Haim A, Wolf A, Rubin G, Genis Y, Khoury M, Rozen N. Effect of center of pressure modulation on knee adduction moment in medial compartment knee osteoarthritis. J Orthop Res. 2011;29(11):1668–74.CrossRefPubMed
13.
go back to reference Haim A, Rozen N, Dekel S, Halperin N, Wolf A. Control of knee coronal plane moment via modulation of center of pressure: a prospective gait analysis study. J Biomech. 2008;41(14):3010–6.CrossRefPubMed Haim A, Rozen N, Dekel S, Halperin N, Wolf A. Control of knee coronal plane moment via modulation of center of pressure: a prospective gait analysis study. J Biomech. 2008;41(14):3010–6.CrossRefPubMed
14.
go back to reference Han TR, Paik NJ, Im MS. Quantification of the path of center of pressure (COP) using an F-scan in-shoe transducer. Gait Posture. 1999;10(3):248–54.CrossRefPubMed Han TR, Paik NJ, Im MS. Quantification of the path of center of pressure (COP) using an F-scan in-shoe transducer. Gait Posture. 1999;10(3):248–54.CrossRefPubMed
15.
go back to reference Boone DC, Azen SP. Normal range of motion of joints in male subjects. J Bone Joint Surg Am. 1979;61(5):756–9.PubMed Boone DC, Azen SP. Normal range of motion of joints in male subjects. J Bone Joint Surg Am. 1979;61(5):756–9.PubMed
16.
go back to reference Nigg BM, G KE, Federolf P, Landry SC. Gender differences in lower extremity gait biomechanics during walking using an unstable shoe. Clin Biomech (Bristol, Avon). 2010;25(10):1047–52.CrossRef Nigg BM, G KE, Federolf P, Landry SC. Gender differences in lower extremity gait biomechanics during walking using an unstable shoe. Clin Biomech (Bristol, Avon). 2010;25(10):1047–52.CrossRef
Metadata
Title
Alteration of the foot center of pressure trajectory by an unstable shoe design
Authors
Mona Khoury
Amir Haim
Amir Herman
Nimrod Rozen
Alon Wolf
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Foot and Ankle Research / Issue 1/2015
Electronic ISSN: 1757-1146
DOI
https://doi.org/10.1186/s13047-015-0124-3

Other articles of this Issue 1/2015

Journal of Foot and Ankle Research 1/2015 Go to the issue