Skip to main content
Top
Published in: Annals of Surgical Oncology 3/2013

01-12-2013 | Translational Research and Biomarkers

Alteration of the E-cadherin/β-Catenin Complex Predicts Poor Response to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor (EGFR-TKI) Treatment

Authors: Seol Bong Yoo, MD, Yu Jung Kim, MD, Hyojin Kim, MD, Yan Jin, MD, Ping-Li Sun, MD, Sanghoon Jheon, MD, PhD, Jong Seok Lee, MD, PhD, Jin-Haeng Chung, MD, PhD

Published in: Annals of Surgical Oncology | Special Issue 3/2013

Login to get access

Abstract

Background

Epidermal growth factor receptor (EGFR) mutation alone may be insufficient to predict clinical outcomes in the response to EGFR-tyrosine kinase inhibitor (TKI) therapy. The secondary mutation T790 M and MET amplification are mechanisms of acquired resistance to EGFR-TKI in approximately 50 % of patients, but the remaining mechanisms are unknown.

Methods

Eight metastatic lesions and specimens from 41 non-small cell lung carcinoma (NSCLC) patients harbouring activating EGFR mutations who underwent surgical resection and EGFR-TKI therapy were available. Immunohistochemistry was used to evaluate E-cadherin, β-catenin, and PTEN. Chromogenic in situ hybridisation and silver-enhanced in situ hybridisation were used to evaluate EGFR and MET amplification.

Results

Patients with E-cadherin/β-catenin alteration showed a poor objective response rate (ORR) (p = 0.005) and shorter overall survival (p = 0.059). Additionally, β-catenin alteration was associated with a poor ORR (p = 0.012). Of the metastatic tumours, three cases (37.5 %) showed the acquisition of altered E-cadherin/β-catenin and PTEN loss and two cases (25 %) demonstrated MET/EGFR amplification.

Conclusions

Altered E-cadherin/β-catenin expression in NSCLC harbouring EGFR mutations was associated with a poor response to EGFR-TKI. During metastatic progression, changes in E-cadherin/β-catenin were found. These results may suggest that E-cadherin/β-catenin alteration is related to poor TKI response and resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.PubMedCrossRef Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.PubMedCrossRef
2.
go back to reference Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.PubMedCrossRef Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.PubMedCrossRef
3.
4.
go back to reference Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treatment. 2012;44:151–6.CrossRef Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treatment. 2012;44:151–6.CrossRef
5.
go back to reference Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.PubMedCrossRef Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.PubMedCrossRef
6.
go back to reference Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73.PubMedCrossRef Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73.PubMedCrossRef
7.
go back to reference Uramoto H, Iwata T, Onitsuka T, et al. Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res. 2010;30:2513–7.PubMed Uramoto H, Iwata T, Onitsuka T, et al. Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res. 2010;30:2513–7.PubMed
8.
go back to reference Yamamoto C, Basaki Y, Kawahara A, et al. Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res. 2010;70:8715–25.PubMedCrossRef Yamamoto C, Basaki Y, Kawahara A, et al. Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res. 2010;70:8715–25.PubMedCrossRef
9.
go back to reference Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 2008;25:593–600.PubMedCrossRef Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 2008;25:593–600.PubMedCrossRef
10.
go back to reference Brabletz T, Jung A, Reu S, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.PubMedCrossRef Brabletz T, Jung A, Reu S, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.PubMedCrossRef
11.
go back to reference Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50.PubMed Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50.PubMed
12.
13.
go back to reference Kiemer AK, Takeuchi K, Quinlan MP. Identification of genes involved in epithelial-mesenchymal transition and tumor progression. Oncogene. 2001;20:6679–88.PubMedCrossRef Kiemer AK, Takeuchi K, Quinlan MP. Identification of genes involved in epithelial-mesenchymal transition and tumor progression. Oncogene. 2001;20:6679–88.PubMedCrossRef
14.
go back to reference Rho JK, Choi YJ, Lee JK, et al. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer. 2009;63:219–26.PubMedCrossRef Rho JK, Choi YJ, Lee JK, et al. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer. 2009;63:219–26.PubMedCrossRef
15.
go back to reference Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006;66:944–50.PubMedCrossRef Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006;66:944–50.PubMedCrossRef
16.
go back to reference Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.PubMedCrossRef Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.PubMedCrossRef
17.
go back to reference Marsit CJ, Zheng S, Aldape K, et al. PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Human Pathol. 2005;36:768–76.CrossRef Marsit CJ, Zheng S, Aldape K, et al. PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Human Pathol. 2005;36:768–76.CrossRef
18.
go back to reference Travis WD, Brambilla E, Muller-Hermelink HK, et al. World Health Organization classification of tumours. Pathology and genetics. Tumours of the lung, pleura, thymus and heart. Lyon: IARC Press, 2004. Travis WD, Brambilla E, Muller-Hermelink HK, et al. World Health Organization classification of tumours. Pathology and genetics. Tumours of the lung, pleura, thymus and heart. Lyon: IARC Press, 2004.
19.
go back to reference Postmus PE, Brambilla E, Chansky K, et al. The IASLC Lung Cancer Staging Project: proposals for revision of the M descriptors in the forthcoming (seventh) edition of the TNM classification of lung cancer. J Thorac Oncol. 2007;2:686–93.PubMedCrossRef Postmus PE, Brambilla E, Chansky K, et al. The IASLC Lung Cancer Staging Project: proposals for revision of the M descriptors in the forthcoming (seventh) edition of the TNM classification of lung cancer. J Thorac Oncol. 2007;2:686–93.PubMedCrossRef
20.
go back to reference Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:18–43.PubMed Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:18–43.PubMed
21.
go back to reference Xu X, Sun PL, Li JZ, et al. Aberrant Wnt1/beta-catenin expression is an independent poor prognostic marker of non-small cell lung cancer after surgery. J Thorac Oncol. 2011;6:716–24.PubMedCrossRef Xu X, Sun PL, Li JZ, et al. Aberrant Wnt1/beta-catenin expression is an independent poor prognostic marker of non-small cell lung cancer after surgery. J Thorac Oncol. 2011;6:716–24.PubMedCrossRef
22.
go back to reference Xu HT, Wang L, Lin D, et al. Abnormal beta-catenin and reduced axin expression are associated with poor differentiation and progression in non-small cell lung cancer. Am J Clin Pathol. 2006;125:534–41.PubMed Xu HT, Wang L, Lin D, et al. Abnormal beta-catenin and reduced axin expression are associated with poor differentiation and progression in non-small cell lung cancer. Am J Clin Pathol. 2006;125:534–41.PubMed
23.
go back to reference Yoo SB, Xu X, Lee HJ, et al. Loss of PTEN expression is an independent poor prognostic factor in non-small cell lung cancer. Korean J Pathol. 2011;45:329–35.CrossRef Yoo SB, Xu X, Lee HJ, et al. Loss of PTEN expression is an independent poor prognostic factor in non-small cell lung cancer. Korean J Pathol. 2011;45:329–35.CrossRef
24.
go back to reference Chang YL, Wu CT, Lin SC, et al. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin Cancer Res. 2007;13:52–8.PubMedCrossRef Chang YL, Wu CT, Lin SC, et al. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin Cancer Res. 2007;13:52–8.PubMedCrossRef
25.
go back to reference Yoo SB, Lee HJ, Park JO, et al. Reliability of chromogenic in situ hybridization for epidermal growth factor receptor gene copy number detection in non-small-cell lung carcinomas: a comparison with fluorescence in situ hybridization study. Lung Cancer. 2010;67:301–5.PubMedCrossRef Yoo SB, Lee HJ, Park JO, et al. Reliability of chromogenic in situ hybridization for epidermal growth factor receptor gene copy number detection in non-small-cell lung carcinomas: a comparison with fluorescence in situ hybridization study. Lung Cancer. 2010;67:301–5.PubMedCrossRef
26.
go back to reference Varella-Garcia M. Stratification of non-small cell lung cancer patients for therapy with epidermal growth factor receptor inhibitors: the EGFR fluorescence in situ hybridization assay. Diagn Pathol. 2006;1:19.PubMedCrossRef Varella-Garcia M. Stratification of non-small cell lung cancer patients for therapy with epidermal growth factor receptor inhibitors: the EGFR fluorescence in situ hybridization assay. Diagn Pathol. 2006;1:19.PubMedCrossRef
27.
go back to reference Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.PubMedCrossRef Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16.PubMedCrossRef
28.
go back to reference Uramoto H, Shimokawa H, Hanagiri T, et al. Expression of selected gene for acquired drug resistance to EGFR-TKI in lung adenocarcinoma. Lung Cancer. 2011;73:361–5.PubMedCrossRef Uramoto H, Shimokawa H, Hanagiri T, et al. Expression of selected gene for acquired drug resistance to EGFR-TKI in lung adenocarcinoma. Lung Cancer. 2011;73:361–5.PubMedCrossRef
29.
go back to reference Li Z, Wang L, Zhang W, et al. Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochem Biophys Res Comm. 2007;363:165–70.PubMedCrossRef Li Z, Wang L, Zhang W, et al. Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochem Biophys Res Comm. 2007;363:165–70.PubMedCrossRef
30.
go back to reference Subauste MC, Nalbant P, Adamson ED, Hahn KM. Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem. 2005;280:5676–81.CrossRef Subauste MC, Nalbant P, Adamson ED, Hahn KM. Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem. 2005;280:5676–81.CrossRef
31.
go back to reference Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97:643–55.PubMedCrossRef Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97:643–55.PubMedCrossRef
32.
go back to reference Hirsch FR, Varella-Garcia M, Cappuzzo F, et al. Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. Ann Oncol. 2007;18:752–60.PubMedCrossRef Hirsch FR, Varella-Garcia M, Cappuzzo F, et al. Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. Ann Oncol. 2007;18:752–60.PubMedCrossRef
Metadata
Title
Alteration of the E-cadherin/β-Catenin Complex Predicts Poor Response to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor (EGFR-TKI) Treatment
Authors
Seol Bong Yoo, MD
Yu Jung Kim, MD
Hyojin Kim, MD
Yan Jin, MD
Ping-Li Sun, MD
Sanghoon Jheon, MD, PhD
Jong Seok Lee, MD, PhD
Jin-Haeng Chung, MD, PhD
Publication date
01-12-2013
Publisher
Springer US
Published in
Annals of Surgical Oncology / Issue Special Issue 3/2013
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-013-2970-1

Other articles of this Special Issue 3/2013

Annals of Surgical Oncology 3/2013 Go to the issue