Skip to main content
Top
Published in: Respiratory Research 1/2022

Open Access 01-12-2022 | Alpha-1 Antitrypsin Deficiency | Research

New variants of alpha-1-antitrypsin: structural simulations and clinical expression

Authors: Angel Gonzalez, Irene Belmonte, Alexa Nuñez, Georgina Farago, Miriam Barrecheguren, Mònica Pons, Gerard Orriols, Pablo Gabriel-Medina, Francisco Rodríguez-Frías, Marc Miravitlles, Cristina Esquinas

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

Alpha-1 antitrypsin deficiency (AATD) is characterized by reduced serum levels of the AAT protein and predisposes to liver and lung disease. The characterization at structural level of novel pathogenic SERPINA1 mutants coding for circulating AAT could provide novel insights into the mechanisms of AAT misfolding. The present study aimed to provide a practical framework for the identification and analysis of new AAT mutations, combining structural simulations and clinical data.

Methods

We analysed a total of five mutations (four not previously described) in a total of six subjects presenting moderate to severe AATD: Gly95Alafs*18, Val210Glu, Asn247Ser, Pi*S + Asp341His and Pi*S + Leu383Phe + Lys394Ile. Clinical data, genotyping and phenotyping assays, structural mapping, and conformational characterization through molecular dynamic (MD) simulations were developed and combined.

Results

Newly discovered AAT missense variants were localized both on the interaction surface and the hydrophobic core of the protein. Distribution of mutations across the structure revealed Val210Glu at the solvent exposed s4C strand and close to the “Gate” region. Asn247Ser was located on the accessible surface, which is important for glycan attachment. On the other hand, Asp341His, Leu383Phe were mapped close to the “breach” and “shutter” regions. MD analysis revealed the reshaping of local interactions around the investigated substitutions that have varying effects on AAT conformational flexibility, hydrophobic packing, and electronic surface properties. The most severe structural changes were observed in the double- and triple-mutant (Pi*S + Asp341His and Pi*S + Leu383Phe + Lys394Ile) molecular models. The two carriers presented impaired lung function.

Conclusions

The results characterize five variants, four of them previously unknown, of the SERPINA1 gene, which define new alleles contributing to the deficiency of AAT. Rare variants might be more frequent than expected, and therefore, in discordant cases, standardized screening of the S and Z alleles needs complementation with gene sequencing and structural approaches. The utility of computational modelling for providing supporting evidence of the pathogenicity of rare single nucleotide variations is discussed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Menga G, Fernandez Acquier M, Echazarreta AL, Sorroche PB, Lorenzon MV, Fernandez ME, Saez MS, Grupo de estudio DA. Prevalence of alpha-1 antitrypsin deficiency in COPD patients in Argentina. The DAAT.AR Study. Arch Bronconeumol (Engl Ed) 2020, 56:571–577. Menga G, Fernandez Acquier M, Echazarreta AL, Sorroche PB, Lorenzon MV, Fernandez ME, Saez MS, Grupo de estudio DA. Prevalence of alpha-1 antitrypsin deficiency in COPD patients in Argentina. The DAAT.AR Study. Arch Bronconeumol (Engl Ed) 2020, 56:571–577.
2.
go back to reference Stolk J, Seersholm N, Kalsheker N. Alpha1-antitrypsin deficiency: current perspective on research, diagnosis, and management. Int J Chron Obstruct Pulmon Dis. 2006;1:151–60. Stolk J, Seersholm N, Kalsheker N. Alpha1-antitrypsin deficiency: current perspective on research, diagnosis, and management. Int J Chron Obstruct Pulmon Dis. 2006;1:151–60.
3.
go back to reference Greene CM, Marciniak SJ, Teckman J, Ferrarotti I, Brantly ML, Lomas DA, Stoller JK, McElvaney NG. Alpha1-Antitrypsin deficiency. Nat Rev Dis Primers. 2016;2:16051.CrossRef Greene CM, Marciniak SJ, Teckman J, Ferrarotti I, Brantly ML, Lomas DA, Stoller JK, McElvaney NG. Alpha1-Antitrypsin deficiency. Nat Rev Dis Primers. 2016;2:16051.CrossRef
4.
go back to reference Jonigk D, Al-Omari M, Maegel L, Muller M, Izykowski N, Hong J, Hong K, Kim SH, Dorsch M, Mahadeva R, et al. Anti-inflammatory and immunomodulatory properties of alpha1-antitrypsin without inhibition of elastase. Proc Natl Acad Sci U S A. 2013;110:15007–12.CrossRef Jonigk D, Al-Omari M, Maegel L, Muller M, Izykowski N, Hong J, Hong K, Kim SH, Dorsch M, Mahadeva R, et al. Anti-inflammatory and immunomodulatory properties of alpha1-antitrypsin without inhibition of elastase. Proc Natl Acad Sci U S A. 2013;110:15007–12.CrossRef
5.
go back to reference Carrell RW, Lomas DA, Sidhar S, Foreman R. Alpha 1-antitrypsin deficiency. A conformational disease. Chest. 1996;110:243S-247S.CrossRef Carrell RW, Lomas DA, Sidhar S, Foreman R. Alpha 1-antitrypsin deficiency. A conformational disease. Chest. 1996;110:243S-247S.CrossRef
6.
go back to reference Mills K, Mills PB, Clayton PT, Mian N, Johnson AW, Winchester BG. The underglycosylation of plasma alpha 1-antitrypsin in congenital disorders of glycosylation type I is not random. Glycobiology. 2003;13:73–85.CrossRef Mills K, Mills PB, Clayton PT, Mian N, Johnson AW, Winchester BG. The underglycosylation of plasma alpha 1-antitrypsin in congenital disorders of glycosylation type I is not random. Glycobiology. 2003;13:73–85.CrossRef
7.
go back to reference McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J Proteome Res. 2014;13:3131–43.CrossRef McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J Proteome Res. 2014;13:3131–43.CrossRef
8.
go back to reference Brantly M, Nukiwa T, Crystal RG. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med. 1988;84:13–31.CrossRef Brantly M, Nukiwa T, Crystal RG. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med. 1988;84:13–31.CrossRef
9.
go back to reference Carrell RW, Whisstock J, Lomas DA. Conformational changes in serpins and the mechanism of alpha 1-antitrypsin deficiency. Am J Respir Crit Care Med. 1994;150:S171-175.CrossRef Carrell RW, Whisstock J, Lomas DA. Conformational changes in serpins and the mechanism of alpha 1-antitrypsin deficiency. Am J Respir Crit Care Med. 1994;150:S171-175.CrossRef
10.
go back to reference Im H, Woo MS, Hwang KY, Yu MH. Interactions causing the kinetic trap in serpin protein folding. J Biol Chem. 2002;277:46347–54.CrossRef Im H, Woo MS, Hwang KY, Yu MH. Interactions causing the kinetic trap in serpin protein folding. J Biol Chem. 2002;277:46347–54.CrossRef
11.
go back to reference Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, Jairajpuri MA. Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids. 2011;2011: 606797.CrossRef Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, Jairajpuri MA. Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids. 2011;2011: 606797.CrossRef
12.
go back to reference Huang X, Zheng Y, Zhang F, Wei Z, Wang Y, Carrell RW, Read RJ, Chen GQ, Zhou A. Molecular mechanism of Z alpha1-antitrypsin deficiency. J Biol Chem. 2016;291:15674–86.CrossRef Huang X, Zheng Y, Zhang F, Wei Z, Wang Y, Carrell RW, Read RJ, Chen GQ, Zhou A. Molecular mechanism of Z alpha1-antitrypsin deficiency. J Biol Chem. 2016;291:15674–86.CrossRef
13.
go back to reference Stoller JK, Aboussouan LS. A review of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2012;185:246–59.CrossRef Stoller JK, Aboussouan LS. A review of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2012;185:246–59.CrossRef
14.
go back to reference Stoller JK, Brantly M. The challenge of detecting alpha-1 antitrypsin deficiency. COPD. 2013;10(Suppl 1):26–34.CrossRef Stoller JK, Brantly M. The challenge of detecting alpha-1 antitrypsin deficiency. COPD. 2013;10(Suppl 1):26–34.CrossRef
15.
go back to reference Engh R, Lobermann H, Schneider M, Wiegand G, Huber R, Laurell CB. The S variant of human alpha 1-antitrypsin, structure and implications for function and metabolism. Protein Eng. 1989;2:407–15.CrossRef Engh R, Lobermann H, Schneider M, Wiegand G, Huber R, Laurell CB. The S variant of human alpha 1-antitrypsin, structure and implications for function and metabolism. Protein Eng. 1989;2:407–15.CrossRef
16.
go back to reference Greulich T, Vogelmeier CF. Alpha-1-antitrypsin deficiency: increasing awareness and improving diagnosis. Ther Adv Respir Dis. 2016;10:72–84.CrossRef Greulich T, Vogelmeier CF. Alpha-1-antitrypsin deficiency: increasing awareness and improving diagnosis. Ther Adv Respir Dis. 2016;10:72–84.CrossRef
17.
go back to reference Rodriguez-Frias F, Miravitlles M, Vidal R, Camos S, Jardi R. Rare alpha-1-antitrypsin variants: are they really so rare? Ther Adv Respir Dis. 2012;6:79–85.CrossRef Rodriguez-Frias F, Miravitlles M, Vidal R, Camos S, Jardi R. Rare alpha-1-antitrypsin variants: are they really so rare? Ther Adv Respir Dis. 2012;6:79–85.CrossRef
18.
go back to reference Matamala N, Lara B, Gomez-Mariano G, Martinez S, Retana D, Fernandez T, Silvestre RA, Belmonte I, Rodriguez-Frias F, Vilar M, et al. Characterization of novel missense variants of SERPINA1 gene causing alpha-1 antitrypsin deficiency. Am J Respir Cell Mol Biol. 2018;58:706–16.CrossRef Matamala N, Lara B, Gomez-Mariano G, Martinez S, Retana D, Fernandez T, Silvestre RA, Belmonte I, Rodriguez-Frias F, Vilar M, et al. Characterization of novel missense variants of SERPINA1 gene causing alpha-1 antitrypsin deficiency. Am J Respir Cell Mol Biol. 2018;58:706–16.CrossRef
19.
go back to reference Nunez A, Belmonte I, Miranda E, Barrecheguren M, Farago G, Loeb E, Pons M, Rodriguez-Frias F, Gabriel-Medina P, Rodriguez E, et al. Association between circulating alpha-1 antitrypsin polymers and lung and liver disease. Respir Res. 2021;22:244.CrossRef Nunez A, Belmonte I, Miranda E, Barrecheguren M, Farago G, Loeb E, Pons M, Rodriguez-Frias F, Gabriel-Medina P, Rodriguez E, et al. Association between circulating alpha-1 antitrypsin polymers and lung and liver disease. Respir Res. 2021;22:244.CrossRef
20.
go back to reference Renoux C, Odou MF, Tosato G, Teoli J, Abbou N, Lombard C, Zerimech F, Porchet N, ChapuisCellier C, Balduyck M, Joly P. Description of 22 new alpha-1 antitrypsin genetic variants. Orphanet J Rare Dis. 2018;13:161.CrossRef Renoux C, Odou MF, Tosato G, Teoli J, Abbou N, Lombard C, Zerimech F, Porchet N, ChapuisCellier C, Balduyck M, Joly P. Description of 22 new alpha-1 antitrypsin genetic variants. Orphanet J Rare Dis. 2018;13:161.CrossRef
21.
go back to reference Kueppers F, Andrake MD, Xu Q, Dunbrack RL Jr, Kim J, Sanders CL. Protein modeling to assess the pathogenicity of rare variants of SERPINA1 in patients suspected of having Alpha 1 Antitrypsin Deficiency. BMC Med Genet. 2019;20:125.CrossRef Kueppers F, Andrake MD, Xu Q, Dunbrack RL Jr, Kim J, Sanders CL. Protein modeling to assess the pathogenicity of rare variants of SERPINA1 in patients suspected of having Alpha 1 Antitrypsin Deficiency. BMC Med Genet. 2019;20:125.CrossRef
22.
go back to reference Miravitlles M, Nunez A, Torres-Duran M, Casas-Maldonado F, Rodriguez-Hermosa JL, Lopez-Campos JL, Calle M, Rodriguez E, Esquinas C, Barrecheguren M. The importance of reference centers and registries for rare diseases: the example of alpha-1 antitrypsin deficiency. COPD. 2020;17:346–54.CrossRef Miravitlles M, Nunez A, Torres-Duran M, Casas-Maldonado F, Rodriguez-Hermosa JL, Lopez-Campos JL, Calle M, Rodriguez E, Esquinas C, Barrecheguren M. The importance of reference centers and registries for rare diseases: the example of alpha-1 antitrypsin deficiency. COPD. 2020;17:346–54.CrossRef
23.
go back to reference Thusberg J, Vihinen M. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat. 2009;30:703–14.CrossRef Thusberg J, Vihinen M. Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat. 2009;30:703–14.CrossRef
24.
go back to reference Hazari YM, Bashir A, Habib M, Bashir S, Habib H, Qasim MA, Shah NN, Haq E, Teckman J, Fazili KM. Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions. Mutat Res Rev Mutat Res. 2017;773:14–25.CrossRef Hazari YM, Bashir A, Habib M, Bashir S, Habib H, Qasim MA, Shah NN, Haq E, Teckman J, Fazili KM. Alpha-1-antitrypsin deficiency: genetic variations, clinical manifestations and therapeutic interventions. Mutat Res Rev Mutat Res. 2017;773:14–25.CrossRef
25.
go back to reference Lomas DA, Irving JA, Arico-Muendel C, Belyanskaya S, Brewster A, Brown M, Chung CW, Dave H, Denis A, Dodic N, et al. Development of a small molecule that corrects misfolding and increases secretion of Z alpha1-antitrypsin. EMBO Mol Med. 2021;13: e13167.CrossRef Lomas DA, Irving JA, Arico-Muendel C, Belyanskaya S, Brewster A, Brown M, Chung CW, Dave H, Denis A, Dodic N, et al. Development of a small molecule that corrects misfolding and increases secretion of Z alpha1-antitrypsin. EMBO Mol Med. 2021;13: e13167.CrossRef
26.
go back to reference Belmonte I, Nunez A, Barrecheguren M, Esquinas C, Pons M, Lopez-Martinez RM, Ruiz G, Blanco-Grau A, Ferrer R, Genesca J, et al. Trends in diagnosis of alpha-1 antitrypsin deficiency between 2015 and 2019 in a reference laboratory. Int J Chron Obstruct Pulmon Dis. 2020;15:2421–31.CrossRef Belmonte I, Nunez A, Barrecheguren M, Esquinas C, Pons M, Lopez-Martinez RM, Ruiz G, Blanco-Grau A, Ferrer R, Genesca J, et al. Trends in diagnosis of alpha-1 antitrypsin deficiency between 2015 and 2019 in a reference laboratory. Int J Chron Obstruct Pulmon Dis. 2020;15:2421–31.CrossRef
27.
go back to reference Miravitlles M, Herr C, Ferrarotti I, Jardi R, Rodriguez-Frias F, Luisetti M, Bals R. Laboratory testing of individuals with severe alpha1-antitrypsin deficiency in three European centres. Eur Respir J. 2010;35:960–8.CrossRef Miravitlles M, Herr C, Ferrarotti I, Jardi R, Rodriguez-Frias F, Luisetti M, Bals R. Laboratory testing of individuals with severe alpha1-antitrypsin deficiency in three European centres. Eur Respir J. 2010;35:960–8.CrossRef
28.
go back to reference Lichtinghagen R, Pietsch D, Bantel H, Manns MP, Brand K, Bahr MJ. The Enhanced Liver Fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. J Hepatol. 2013;59:236–42.CrossRef Lichtinghagen R, Pietsch D, Bantel H, Manns MP, Brand K, Bahr MJ. The Enhanced Liver Fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. J Hepatol. 2013;59:236–42.CrossRef
29.
go back to reference Elliott PR, Pei XY, Dafforn TR, Lomas DA. Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci. 2000;9:1274–81.CrossRef Elliott PR, Pei XY, Dafforn TR, Lomas DA. Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Sci. 2000;9:1274–81.CrossRef
30.
go back to reference Patschull AO, Segu L, Nyon MP, Lomas DA, Nobeli I, Barrett TE, Gooptu B. Therapeutic target-site variability in alpha1-antitrypsin characterized at high resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011;67:1492–7.CrossRef Patschull AO, Segu L, Nyon MP, Lomas DA, Nobeli I, Barrett TE, Gooptu B. Therapeutic target-site variability in alpha1-antitrypsin characterized at high resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011;67:1492–7.CrossRef
31.
go back to reference Labute P. Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins. 2009;75:187–205.CrossRef Labute P. Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins. 2009;75:187–205.CrossRef
32.
go back to reference Pall S, Zhmurov A, Bauer P, Abraham M, Lundborg M, Gray A, Hess B, Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J Chem Phys. 2020;153: 134110.CrossRef Pall S, Zhmurov A, Bauer P, Abraham M, Lundborg M, Gray A, Hess B, Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J Chem Phys. 2020;153: 134110.CrossRef
33.
go back to reference Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–8.CrossRef Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–8.CrossRef
34.
go back to reference Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27:112–28.CrossRef Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, Brookes DH, Wilson L, Chen J, Liles K, et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27:112–28.CrossRef
35.
go back to reference Joly P, Lacan P, Chapuis-Cellier C, Garcia C, Bererd M, Francina A. Molecular characterization of 7 new alpha-1 anti-trypsin (A1AT) variants including two with an associated deficient phenotype. Clin Chim Acta. 2014;427:21–2.CrossRef Joly P, Lacan P, Chapuis-Cellier C, Garcia C, Bererd M, Francina A. Molecular characterization of 7 new alpha-1 anti-trypsin (A1AT) variants including two with an associated deficient phenotype. Clin Chim Acta. 2014;427:21–2.CrossRef
36.
go back to reference Huntington JA, Pannu NS, Hazes B, Read RJ, Lomas DA, Carrell RW. A 2.6 A structure of a serpin polymer and implications for conformational disease. J Mol Biol. 1999;293:449–55.CrossRef Huntington JA, Pannu NS, Hazes B, Read RJ, Lomas DA, Carrell RW. A 2.6 A structure of a serpin polymer and implications for conformational disease. J Mol Biol. 1999;293:449–55.CrossRef
37.
go back to reference Dementiev A, Simonovic M, Volz K, Gettins PG. Canonical inhibitor-like interactions explain reactivity of alpha1-proteinase inhibitor Pittsburgh and antithrombin with proteinases. J Biol Chem. 2003;278:37881–7.CrossRef Dementiev A, Simonovic M, Volz K, Gettins PG. Canonical inhibitor-like interactions explain reactivity of alpha1-proteinase inhibitor Pittsburgh and antithrombin with proteinases. J Biol Chem. 2003;278:37881–7.CrossRef
38.
go back to reference Knaupp AS, Bottomley SP. Serpin polymerization and its role in disease—the molecular basis of alpha1-antitrypsin deficiency. IUBMB Life. 2009;61:1–5.CrossRef Knaupp AS, Bottomley SP. Serpin polymerization and its role in disease—the molecular basis of alpha1-antitrypsin deficiency. IUBMB Life. 2009;61:1–5.CrossRef
39.
go back to reference Liddle J, Pearce AC, Arico-Muendel C, Belyanskaya S, Brewster A, Brown M, Chung CW, Denis A, Dodic N, Dossang A, et al. The development of highly potent and selective small molecule correctors of Z alpha1-antitrypsin misfolding. Bioorg Med Chem Lett. 2021;41: 127973.CrossRef Liddle J, Pearce AC, Arico-Muendel C, Belyanskaya S, Brewster A, Brown M, Chung CW, Denis A, Dodic N, Dossang A, et al. The development of highly potent and selective small molecule correctors of Z alpha1-antitrypsin misfolding. Bioorg Med Chem Lett. 2021;41: 127973.CrossRef
40.
go back to reference McCarthy C, Saldova R, O’Brien ME, Bergin DA, Carroll TP, Keenan J, Meleady P, Henry M, Clynes M, Rudd PM, et al. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals. J Proteome Res. 2014;13:596–605.CrossRef McCarthy C, Saldova R, O’Brien ME, Bergin DA, Carroll TP, Keenan J, Meleady P, Henry M, Clynes M, Rudd PM, et al. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals. J Proteome Res. 2014;13:596–605.CrossRef
41.
go back to reference Kolarich D, Turecek PL, Weber A, Mitterer A, Graninger M, Matthiessen P, Nicolaes GA, Altmann F, Schwarz HP. Biochemical, molecular characterization, and glycoproteomic analyses of alpha(1)-proteinase inhibitor products used for replacement therapy. Transfusion. 2006;46:1959–77.CrossRef Kolarich D, Turecek PL, Weber A, Mitterer A, Graninger M, Matthiessen P, Nicolaes GA, Altmann F, Schwarz HP. Biochemical, molecular characterization, and glycoproteomic analyses of alpha(1)-proteinase inhibitor products used for replacement therapy. Transfusion. 2006;46:1959–77.CrossRef
42.
go back to reference Meira L, Boaventura R, Seixas S, Sucena M. Alpha-1 antitrypsin deficiency detection in a Portuguese population. COPD. 2018;15:4–9.CrossRef Meira L, Boaventura R, Seixas S, Sucena M. Alpha-1 antitrypsin deficiency detection in a Portuguese population. COPD. 2018;15:4–9.CrossRef
43.
go back to reference Ferrarotti I, Baccheschi J, Zorzetto M, Tinelli C, Corda L, Balbi B, Campo I, Pozzi E, Faa G, Coni P, et al. Prevalence and phenotype of subjects carrying rare variants in the Italian registry for alpha1-antitrypsin deficiency. J Med Genet. 2005;42:282–7.CrossRef Ferrarotti I, Baccheschi J, Zorzetto M, Tinelli C, Corda L, Balbi B, Campo I, Pozzi E, Faa G, Coni P, et al. Prevalence and phenotype of subjects carrying rare variants in the Italian registry for alpha1-antitrypsin deficiency. J Med Genet. 2005;42:282–7.CrossRef
44.
go back to reference Wu Y, Swulius MT, Moremen KW, Sifers RN. Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A. 2003;100:8229–34.CrossRef Wu Y, Swulius MT, Moremen KW, Sifers RN. Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A. 2003;100:8229–34.CrossRef
45.
go back to reference Termine D, Wu Y, Liu Y, Sifers RN. Alpha1-antitrypsin as model to assess glycan function in endoplasmic reticulum. Methods. 2005;35:348–53.CrossRef Termine D, Wu Y, Liu Y, Sifers RN. Alpha1-antitrypsin as model to assess glycan function in endoplasmic reticulum. Methods. 2005;35:348–53.CrossRef
46.
go back to reference Brodbeck RM, Brown JL. Secretion of alpha-1-proteinase inhibitor requires an almost full length molecule. J Biol Chem. 1992;267:294–7.CrossRef Brodbeck RM, Brown JL. Secretion of alpha-1-proteinase inhibitor requires an almost full length molecule. J Biol Chem. 1992;267:294–7.CrossRef
47.
go back to reference Lopez-Campos JL, Casas-Maldonado F, Torres-Duran M, Medina-Gonzalvez A, Rodriguez-Fidalgo ML, Carrascosa I, Calle M, Osaba L, Rapun N, Drobnic E, Miravitlles M. Results of a diagnostic procedure based on multiplex technology on dried blood spots and buccal swabs for subjects with suspected alpha1 antitrypsin deficiency. Arch Bronconeumol (Engl Ed). 2021;57:42–50.CrossRef Lopez-Campos JL, Casas-Maldonado F, Torres-Duran M, Medina-Gonzalvez A, Rodriguez-Fidalgo ML, Carrascosa I, Calle M, Osaba L, Rapun N, Drobnic E, Miravitlles M. Results of a diagnostic procedure based on multiplex technology on dried blood spots and buccal swabs for subjects with suspected alpha1 antitrypsin deficiency. Arch Bronconeumol (Engl Ed). 2021;57:42–50.CrossRef
Metadata
Title
New variants of alpha-1-antitrypsin: structural simulations and clinical expression
Authors
Angel Gonzalez
Irene Belmonte
Alexa Nuñez
Georgina Farago
Miriam Barrecheguren
Mònica Pons
Gerard Orriols
Pablo Gabriel-Medina
Francisco Rodríguez-Frías
Marc Miravitlles
Cristina Esquinas
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-02271-8

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine