Skip to main content
Top
Published in: Molecular Brain 1/2014

Open Access 01-12-2014 | Research

Allosteric modulation of GABAA receptors by extracellular ATP

Authors: Jun Liu, Yu Tian Wang

Published in: Molecular Brain | Issue 1/2014

Login to get access

Abstract

Background

The γ-aminobutyric acid type A receptor (GABAAR) is the primary receptor mediating fast synaptic inhibition in the brain and plays a critical role in modulation of neuronal excitability and neural networks. Previous studies have demonstrated that ATP and its nucleotide analogs may regulate the function of GABAARs via Ca2+-dependent intracellular mechanisms, which require activation of purinergic 2 (P2) receptors or cross-talk between two receptors.

Results

Here, we report a potentiation of GABAARs by extracellular ATP via a previously un-recognized allosteric mechanism. Using cultured hippocampal neurons as well as HEK293 cells transiently expressing GABAARs, we demonstrate that extracellular ATP potentiates GABAAR mediated currents in a dose-dependent manner with an EC50 of 2.1 ± 0.2 mM. The potentiation was mediated by a postsynaptic mechanism that was not dependent on activation of either ecto-protein kinase or P2 receptors. Single channel recordings from cell-free excised membrane patches under outside-out mode or isolated membrane patches under cell-attached mode suggest that the ATP modulation of GABA currents is achieved through a direct action of ATP on the channels themselves and manifested by increasing the single channel open probability without alteration of its conductance. Moreover, this ATP potentiation of GABAAR could be reconstituted in HEK293 cells that transiently expressed recombinant rat GABAARs.

Conclusions

Our data strongly suggest that extracellular ATP allosterically potentiates GABAAR-gated chloride channels. This novel mode of ATP-mediated modulation of GABAARs may play an important role in regulating neuronal excitability and thereby in fine-tuning the excitation-inhibition balance under conditions where a high level of extracellular ATP is ensured.
Appendix
Available only for authorised users
Literature
1.
go back to reference Macdonald RL, Olsen RW: GABAA receptor channels. Annu Rev Neurosci. 1994, 17: 569-602. 10.1146/annurev.ne.17.030194.003033.PubMedCrossRef Macdonald RL, Olsen RW: GABAA receptor channels. Annu Rev Neurosci. 1994, 17: 569-602. 10.1146/annurev.ne.17.030194.003033.PubMedCrossRef
2.
go back to reference Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E: First genetic evidence of GABA (A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet. 2001, 28: 46-48.PubMed Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme JF, Baulac M, Brice A, Bruzzone R, LeGuern E: First genetic evidence of GABA (A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet. 2001, 28: 46-48.PubMed
3.
go back to reference Scheffer IE, Berkovic SF: The genetics of human epilepsy. Trends Pharmacol Sci. 2003, 24: 428-433. 10.1016/S0165-6147(03)00194-9.PubMedCrossRef Scheffer IE, Berkovic SF: The genetics of human epilepsy. Trends Pharmacol Sci. 2003, 24: 428-433. 10.1016/S0165-6147(03)00194-9.PubMedCrossRef
4.
go back to reference Lydiard RB: The role of GABA in anxiety disorders. J Clin Psychiatry. 2003, 64 (Suppl 3): 21-27.PubMed Lydiard RB: The role of GABA in anxiety disorders. J Clin Psychiatry. 2003, 64 (Suppl 3): 21-27.PubMed
5.
go back to reference Wassef A, Baker J, Kochan LD: GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol. 2003, 23: 601-640. 10.1097/01.jcp.0000095349.32154.a5.PubMedCrossRef Wassef A, Baker J, Kochan LD: GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol. 2003, 23: 601-640. 10.1097/01.jcp.0000095349.32154.a5.PubMedCrossRef
6.
go back to reference Mohler H: GABA (A) receptor diversity and pharmacology. Cell Tissue Res. 2006, 326: 505-516. 10.1007/s00441-006-0284-3.PubMedCrossRef Mohler H: GABA (A) receptor diversity and pharmacology. Cell Tissue Res. 2006, 326: 505-516. 10.1007/s00441-006-0284-3.PubMedCrossRef
7.
go back to reference Korpi ER, Grunder G, Luddens H: Drug interactions at GABA (A) receptors. Prog Neurobiol. 2002, 67: 113-159. 10.1016/S0301-0082(02)00013-8.PubMedCrossRef Korpi ER, Grunder G, Luddens H: Drug interactions at GABA (A) receptors. Prog Neurobiol. 2002, 67: 113-159. 10.1016/S0301-0082(02)00013-8.PubMedCrossRef
8.
go back to reference Reddy DS, Rogawski MA: Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA (A) receptor function and seizure susceptibility. J Neurosci. 2002, 22: 3795-3805.PubMed Reddy DS, Rogawski MA: Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA (A) receptor function and seizure susceptibility. J Neurosci. 2002, 22: 3795-3805.PubMed
9.
go back to reference Slomianka L: Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience. 1992, 48: 325-352. 10.1016/0306-4522(92)90494-M.PubMedCrossRef Slomianka L: Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience. 1992, 48: 325-352. 10.1016/0306-4522(92)90494-M.PubMedCrossRef
10.
go back to reference Smart TG, Hosie AM, Miller PS: Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist. 2004, 10: 432-442. 10.1177/1073858404263463.PubMedCrossRef Smart TG, Hosie AM, Miller PS: Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist. 2004, 10: 432-442. 10.1177/1073858404263463.PubMedCrossRef
11.
go back to reference Brandon NJ, Jovanovic JN, Colledge M, Kittler JT, Brandon JM, Scott JD, Moss SJ: A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABA (A) receptors by cAMP-dependent protein kinase via selective interaction with receptor beta subunits. Mol Cell Neurosci. 2003, 22: 87-97. 10.1016/S1044-7431(02)00017-9.PubMedCrossRef Brandon NJ, Jovanovic JN, Colledge M, Kittler JT, Brandon JM, Scott JD, Moss SJ: A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABA (A) receptors by cAMP-dependent protein kinase via selective interaction with receptor beta subunits. Mol Cell Neurosci. 2003, 22: 87-97. 10.1016/S1044-7431(02)00017-9.PubMedCrossRef
12.
go back to reference Lalo U, Andrew J, Palygin O, Pankratov Y: Ca2 + -dependent modulation of GABAA and NMDA receptors by extracellular ATP: implication for function of tripartite synapse. Biochem Soc Trans. 2009, 37: 1407-1411. 10.1042/BST0371407.PubMedCrossRef Lalo U, Andrew J, Palygin O, Pankratov Y: Ca2 + -dependent modulation of GABAA and NMDA receptors by extracellular ATP: implication for function of tripartite synapse. Biochem Soc Trans. 2009, 37: 1407-1411. 10.1042/BST0371407.PubMedCrossRef
13.
go back to reference Saitow F, Murakoshi T, Suzuki H, Konishi S: Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci. 2005, 25: 2108-2116. 10.1523/JNEUROSCI.4254-04.2005.PubMedCrossRef Saitow F, Murakoshi T, Suzuki H, Konishi S: Metabotropic P2Y purinoceptor-mediated presynaptic and postsynaptic enhancement of cerebellar GABAergic transmission. J Neurosci. 2005, 25: 2108-2116. 10.1523/JNEUROSCI.4254-04.2005.PubMedCrossRef
14.
go back to reference Boue-Grabot E, Toulme E, Emerit MB, Garret M: Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels. J Biol Chem. 2004, 279: 52517-52525. 10.1074/jbc.M410223200.PubMedCrossRef Boue-Grabot E, Toulme E, Emerit MB, Garret M: Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels. J Biol Chem. 2004, 279: 52517-52525. 10.1074/jbc.M410223200.PubMedCrossRef
15.
go back to reference Karanjia R, Garcia-Hernandez LM, Miranda-Morales M, Somani N, Espinosa-Luna R, Montano LM, Barajas-Lopez C: Cross-inhibitory interactions between GABAA and P2X channels in myenteric neurones. Eur J Neurosci. 2006, 23: 3259-3268. 10.1111/j.1460-9568.2006.04861.x.PubMedCrossRef Karanjia R, Garcia-Hernandez LM, Miranda-Morales M, Somani N, Espinosa-Luna R, Montano LM, Barajas-Lopez C: Cross-inhibitory interactions between GABAA and P2X channels in myenteric neurones. Eur J Neurosci. 2006, 23: 3259-3268. 10.1111/j.1460-9568.2006.04861.x.PubMedCrossRef
16.
go back to reference Toulme E, Blais D, Leger C, Landry M, Garret M, Seguela P, Boue-Grabot E: An intracellular motif of P2X (3) receptors is required for functional cross-talk with GABA (A) receptors in nociceptive DRG neurons. J Neurochem. 2007, 102: 1357-1368. 10.1111/j.1471-4159.2007.04640.x.PubMedCrossRef Toulme E, Blais D, Leger C, Landry M, Garret M, Seguela P, Boue-Grabot E: An intracellular motif of P2X (3) receptors is required for functional cross-talk with GABA (A) receptors in nociceptive DRG neurons. J Neurochem. 2007, 102: 1357-1368. 10.1111/j.1471-4159.2007.04640.x.PubMedCrossRef
17.
go back to reference Ortinau S, Laube B, Zimmermann H: ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J Neurosci. 2003, 23: 4996-5003.PubMed Ortinau S, Laube B, Zimmermann H: ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J Neurosci. 2003, 23: 4996-5003.PubMed
18.
go back to reference Jo YH, Schlichter R: Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci. 1999, 2: 241-245. 10.1038/6344.PubMedCrossRef Jo YH, Schlichter R: Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci. 1999, 2: 241-245. 10.1038/6344.PubMedCrossRef
19.
go back to reference Jo YH, Role LW: Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci. 2002, 22: 4794-4804.PubMed Jo YH, Role LW: Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci. 2002, 22: 4794-4804.PubMed
20.
go back to reference Sperlagh B, Vizi SE: Neuronal synthesis, storage and release of ATP. Semin Neurosci. 1996, 8: 175-186. 10.1006/smns.1996.0023.CrossRef Sperlagh B, Vizi SE: Neuronal synthesis, storage and release of ATP. Semin Neurosci. 1996, 8: 175-186. 10.1006/smns.1996.0023.CrossRef
21.
go back to reference Dubyak GR, el-Moatassim C: Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993, 265: C577-C606.PubMed Dubyak GR, el-Moatassim C: Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993, 265: C577-C606.PubMed
22.
go back to reference Bodin P, Burnstock G: Purinergic signalling: ATP release. Neurochem Res. 2001, 26: 959-969. 10.1023/A:1012388618693.PubMedCrossRef Bodin P, Burnstock G: Purinergic signalling: ATP release. Neurochem Res. 2001, 26: 959-969. 10.1023/A:1012388618693.PubMedCrossRef
23.
go back to reference Franke H, Krugel U, Illes P: P2 receptors and neuronal injury. Pflugers Arch. 2006, 452: 622-644. 10.1007/s00424-006-0071-8.PubMedCrossRef Franke H, Krugel U, Illes P: P2 receptors and neuronal injury. Pflugers Arch. 2006, 452: 622-644. 10.1007/s00424-006-0071-8.PubMedCrossRef
24.
go back to reference Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F: Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med. 1997, 185: 579-582. 10.1084/jem.185.3.579.PubMedPubMedCentralCrossRef Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F: Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med. 1997, 185: 579-582. 10.1084/jem.185.3.579.PubMedPubMedCentralCrossRef
25.
go back to reference Pankratov Y, Lalo U, Verkhratsky A, North RA: Vesicular release of ATP at central synapses. Pflugers Arch. 2006, 452: 589-597. 10.1007/s00424-006-0061-x.PubMedCrossRef Pankratov Y, Lalo U, Verkhratsky A, North RA: Vesicular release of ATP at central synapses. Pflugers Arch. 2006, 452: 589-597. 10.1007/s00424-006-0061-x.PubMedCrossRef
26.
go back to reference Mody I, Pearce RA: Diversity of inhibitory neurotransmission through GABA (A) receptors. Trends Neurosci. 2004, 27: 569-575. 10.1016/j.tins.2004.07.002.PubMedCrossRef Mody I, Pearce RA: Diversity of inhibitory neurotransmission through GABA (A) receptors. Trends Neurosci. 2004, 27: 569-575. 10.1016/j.tins.2004.07.002.PubMedCrossRef
27.
go back to reference McDonald BJ, Moss SJ: Differential phosphorylation of intracellular domains of gamma-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase. J Biol Chem. 1994, 269: 18111-18117.PubMed McDonald BJ, Moss SJ: Differential phosphorylation of intracellular domains of gamma-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase. J Biol Chem. 1994, 269: 18111-18117.PubMed
28.
go back to reference Poisbeau P, Cheney MC, Browning MD, Mody I: Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J Neurosci. 1999, 19: 674-683.PubMed Poisbeau P, Cheney MC, Browning MD, Mody I: Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J Neurosci. 1999, 19: 674-683.PubMed
29.
go back to reference Lin YF, Browning MD, Dudek EM, Macdonald RL: Protein kinase C enhances recombinant bovine alpha 1 beta 1 gamma 2L GABAA receptor whole-cell currents expressed in L929 fibroblasts. Neuron. 1994, 13: 1421-1431. 10.1016/0896-6273(94)90427-8.PubMedCrossRef Lin YF, Browning MD, Dudek EM, Macdonald RL: Protein kinase C enhances recombinant bovine alpha 1 beta 1 gamma 2L GABAA receptor whole-cell currents expressed in L929 fibroblasts. Neuron. 1994, 13: 1421-1431. 10.1016/0896-6273(94)90427-8.PubMedCrossRef
30.
go back to reference Wirkner K, Stanchev D, Koles L, Klebingat M, Dihazi H, Flehmig G, Vial C, Evans RJ, Furst S, Mager PP, et al: Regulation of human recombinant P2X3 receptors by ecto-protein kinase C. J Neurosci. 2005, 25: 7734-7742. 10.1523/JNEUROSCI.2028-05.2005.PubMedCrossRef Wirkner K, Stanchev D, Koles L, Klebingat M, Dihazi H, Flehmig G, Vial C, Evans RJ, Furst S, Mager PP, et al: Regulation of human recombinant P2X3 receptors by ecto-protein kinase C. J Neurosci. 2005, 25: 7734-7742. 10.1523/JNEUROSCI.2028-05.2005.PubMedCrossRef
31.
go back to reference Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H: Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009, 32: 19-29. 10.1016/j.tins.2008.10.001.PubMedCrossRef Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H: Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009, 32: 19-29. 10.1016/j.tins.2008.10.001.PubMedCrossRef
32.
go back to reference Ralevic V, Burnstock G: Receptors for purines and pyrimidines. Pharmacol Rev. 1998, 50: 413-492.PubMed Ralevic V, Burnstock G: Receptors for purines and pyrimidines. Pharmacol Rev. 1998, 50: 413-492.PubMed
34.
go back to reference Sperlagh B, Vizi ES, Wirkner K, Illes P: P2X7 receptors in the nervous system. Prog Neurobiol. 2006, 78: 327-346. 10.1016/j.pneurobio.2006.03.007.PubMedCrossRef Sperlagh B, Vizi ES, Wirkner K, Illes P: P2X7 receptors in the nervous system. Prog Neurobiol. 2006, 78: 327-346. 10.1016/j.pneurobio.2006.03.007.PubMedCrossRef
35.
go back to reference Jiang LH, Mackenzie AB, North RA, Surprenant A: Brilliant blue G selectively blocks ATP-gated rat P2X (7) receptors. Mol Pharmacol. 2000, 58: 82-88.PubMed Jiang LH, Mackenzie AB, North RA, Surprenant A: Brilliant blue G selectively blocks ATP-gated rat P2X (7) receptors. Mol Pharmacol. 2000, 58: 82-88.PubMed
36.
go back to reference Reddy MC, Palmisano DV, Groth-Vasselli B, Farnsworth PN: 31P NMR studies of the ATP/alpha-crystallin complex: functional implications. Biochem Biophys Res Commun. 1992, 189: 1578-1584. 10.1016/0006-291X(92)90256-K.PubMedCrossRef Reddy MC, Palmisano DV, Groth-Vasselli B, Farnsworth PN: 31P NMR studies of the ATP/alpha-crystallin complex: functional implications. Biochem Biophys Res Commun. 1992, 189: 1578-1584. 10.1016/0006-291X(92)90256-K.PubMedCrossRef
37.
go back to reference Bezprozvanny I, Ehrlich BE: ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron. 1993, 10: 1175-1184. 10.1016/0896-6273(93)90065-Y.PubMedCrossRef Bezprozvanny I, Ehrlich BE: ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron. 1993, 10: 1175-1184. 10.1016/0896-6273(93)90065-Y.PubMedCrossRef
38.
go back to reference Quinton PM, Reddy MM: Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature. 1992, 360: 79-81. 10.1038/360079a0.PubMedCrossRef Quinton PM, Reddy MM: Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature. 1992, 360: 79-81. 10.1038/360079a0.PubMedCrossRef
39.
go back to reference McKernan RM, Whiting PJ: Which GABAA-receptor subtypes really occur in the brain?. Trends Neurosci. 1996, 19: 139-143. 10.1016/S0166-2236(96)80023-3.PubMedCrossRef McKernan RM, Whiting PJ: Which GABAA-receptor subtypes really occur in the brain?. Trends Neurosci. 1996, 19: 139-143. 10.1016/S0166-2236(96)80023-3.PubMedCrossRef
40.
go back to reference Shirasaki T, Aibara K, Akaike N: Direct modulation of GABAA receptor by intracellular ATP in dissociated nucleus tractus solitarii neurones of rat. J Physiol. 1992, 449: 551-572.PubMedPubMedCentralCrossRef Shirasaki T, Aibara K, Akaike N: Direct modulation of GABAA receptor by intracellular ATP in dissociated nucleus tractus solitarii neurones of rat. J Physiol. 1992, 449: 551-572.PubMedPubMedCentralCrossRef
41.
go back to reference Ferris CD, Huganir RL, Snyder SH: Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci USA. 1990, 87: 2147-2151. 10.1073/pnas.87.6.2147.PubMedPubMedCentralCrossRef Ferris CD, Huganir RL, Snyder SH: Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci USA. 1990, 87: 2147-2151. 10.1073/pnas.87.6.2147.PubMedPubMedCentralCrossRef
42.
go back to reference Kwak J, Wang MH, Hwang SW, Kim TY, Lee SY, Oh U: Intracellular ATP increases capsaicin-activated channel activity by interacting with nucleotide-binding domains. J Neurosci. 2000, 20: 8298-8304.PubMed Kwak J, Wang MH, Hwang SW, Kim TY, Lee SY, Oh U: Intracellular ATP increases capsaicin-activated channel activity by interacting with nucleotide-binding domains. J Neurosci. 2000, 20: 8298-8304.PubMed
43.
go back to reference Mielke JG, Taghibiglou C, Wang YT: Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience. 2006, 143: 165-173. 10.1016/j.neuroscience.2006.07.055.PubMedCrossRef Mielke JG, Taghibiglou C, Wang YT: Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience. 2006, 143: 165-173. 10.1016/j.neuroscience.2006.07.055.PubMedCrossRef
44.
go back to reference Bradley CA, Taghibiglou C, Collingridge GL, Wang YT: Mechanisms involved in the reduction of GABAA receptor alpha1-subunit expression caused by the epilepsy mutation A322D in the trafficking-competent receptor. J Biol Chem. 2008, 283: 22043-22050. 10.1074/jbc.M801708200.PubMedCrossRef Bradley CA, Taghibiglou C, Collingridge GL, Wang YT: Mechanisms involved in the reduction of GABAA receptor alpha1-subunit expression caused by the epilepsy mutation A322D in the trafficking-competent receptor. J Biol Chem. 2008, 283: 22043-22050. 10.1074/jbc.M801708200.PubMedCrossRef
Metadata
Title
Allosteric modulation of GABAA receptors by extracellular ATP
Authors
Jun Liu
Yu Tian Wang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2014
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-7-6

Other articles of this Issue 1/2014

Molecular Brain 1/2014 Go to the issue