Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Alkaloid extracts from Combretum zeyheri inhibit the growth of Mycobacterium smegmatis

Authors: Tafadzwa Nyambuya, Ruvimbo Mautsa, Stanley Mukanganyama

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Current tuberculosis regimens have failed to combat the issue of drug resistance and ethno medicines may represent a possible source of antimycobacterial agents. Combretum species are well known in African traditional medicines and used for various ailments including pneumonia, venereal diseases like syphilis, mental problems, relief of sore throats and colds, fever, and chest coughs associated with tuberculosis. Alkaloids function as either hydrogen-acceptor or hydrogen-donor in hydrogen bonding critical for the interaction between targets thus, potentiating effects of curative agents on diseases. Alkaloid extracts from leaves of Combretum zeyheri, Combretum platypetalum, Combretum molle and Combretum apiculatum, were assessed for antimycobacterial activity to establish rationale for their use in traditional medicines for various ailments including pneumonia, relief of sore throats and colds, fever, and chest coughs associated with tuberculosis.

Methods

Alkaloids were extracted from the leaves of Combretum zeyheri, Combretum platypetalum, Combretum molle and Combretum apiculatum. The broth microdilution method was used for the screening of growth inhibitory activity. The standard drug rifampicin was used as the positive control. Alkaloid extracts from the most potent plant species, Combretum zeyheri were further investigated for time-kill dependency effects on drug transport in Mycobacterium smegmatis.

Results

Using the broth microdilution susceptibility method, C. zeyheri alkaloid extract, was found to have the most antimycobacterial effects with an MIC value of 125 μg/ml whilst MICs for C. molle and C. platypetalum were above 1000 μg/ml. An MBC value of 250 μg/ml was observed with alkaloid extracts from Combretum zeyheri whilst the remaining three Combretum species showed no bactericidal activity. It was also shown that C. zeyheri had potential efflux pump inhibitory activity. Determination of the time-kill kinetics of extracts from C. zeyheri showed not only a concentration-dependent activity but time-dependent bactericidal effect as well.

Conclusions

Alkaloid extracts from the leaves of C. zeyheri have potential as a source of lead compounds that may be developed further into antimycobacterial compounds. The mechanism of action of may be due to inhibition of transport across the cell membrane. Further work needs to be done to isolate the active components in these extracts.
Literature
1.
go back to reference Dheenadhayalan V, Delogu G, Sanguinetti M, Fadda G, Brennan MJ. Variable expression patterns of Mycobacterium tuberculosis PE_PGRS Genes: evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo. J Bacteriol. 2006;188:3721–3725.CrossRefPubMedPubMedCentral Dheenadhayalan V, Delogu G, Sanguinetti M, Fadda G, Brennan MJ. Variable expression patterns of Mycobacterium tuberculosis PE_PGRS Genes: evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo. J Bacteriol. 2006;188:3721–3725.CrossRefPubMedPubMedCentral
2.
go back to reference Semenya SS, Maroyi A. Medicinal plants used for the treatment of tuberculosis by bapedi traditional healers in Three Districts of the Limpopo Province, South Africa. Afr J Tradit Complement Altern Med. 2013;10:316–23.PubMed Semenya SS, Maroyi A. Medicinal plants used for the treatment of tuberculosis by bapedi traditional healers in Three Districts of the Limpopo Province, South Africa. Afr J Tradit Complement Altern Med. 2013;10:316–23.PubMed
3.
go back to reference McGaw LJ, Lall N, Meyer JJ, Eloff JN. The potential of South African plants against mycobacterium infections. J Ethnopharmacol. 2008;119:482–500.CrossRefPubMed McGaw LJ, Lall N, Meyer JJ, Eloff JN. The potential of South African plants against mycobacterium infections. J Ethnopharmacol. 2008;119:482–500.CrossRefPubMed
5.
go back to reference WHO. WHO Global Tuberculosis Report. In: WHO Library Cataloguing-in-Publication Data. 20th ed. Geneva: WHO Press; 2015. WHO. WHO Global Tuberculosis Report. In: WHO Library Cataloguing-in-Publication Data. 20th ed. Geneva: WHO Press; 2015.
7.
go back to reference Mitchison DA. Antimicrobial therapy of tuberculosis: justification for currently recommended treatment regimens. Semin Respir Crit Care Med. 2009;25:307–15.CrossRef Mitchison DA. Antimicrobial therapy of tuberculosis: justification for currently recommended treatment regimens. Semin Respir Crit Care Med. 2009;25:307–15.CrossRef
8.
go back to reference Magwenzi R, Nyakunu C, Mukanganyama S. The effect of selected Combretum species from Zimbabwe on the growth and drug efflux of Mycobacterium aurum and Mycobacterium smegmatis. J Microbial Biochem Technol. 2014;10:1948–5948. Magwenzi R, Nyakunu C, Mukanganyama S. The effect of selected Combretum species from Zimbabwe on the growth and drug efflux of Mycobacterium aurum and Mycobacterium smegmatis. J Microbial Biochem Technol. 2014;10:1948–5948.
9.
go back to reference Steenwinkel J, Knegt GJ, Kate MT, Belkum A, Verbrugh HA, Kremer K, Soolingen D, Woudenberg IAJM. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J Antimicrob Chemother. 2010;10:1–8. Steenwinkel J, Knegt GJ, Kate MT, Belkum A, Verbrugh HA, Kremer K, Soolingen D, Woudenberg IAJM. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J Antimicrob Chemother. 2010;10:1–8.
10.
go back to reference Gupta AK, Chauhan DS, Srivastava K, Das R, Batra S, Mittal M, Goswami P, Shinghai N, Sharma VD. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacterium. J Commun Dis. 2006;38:246–54.PubMed Gupta AK, Chauhan DS, Srivastava K, Das R, Batra S, Mittal M, Goswami P, Shinghai N, Sharma VD. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacterium. J Commun Dis. 2006;38:246–54.PubMed
11.
go back to reference Debas HT, Laxminarayan R, Straus SE. Complementary and Alternative Medicine. Chapter 69. In: Jamison DT, Breman JG, Measham AR, et al., editors. Disease Control Priorities in Developing Countries. 2nd edition. Washington (DC): The International Bank for Reconstruction and Development/The World Bank. New York: Co-published by Oxford University Press; 2006. Debas HT, Laxminarayan R, Straus SE. Complementary and Alternative Medicine. Chapter 69. In: Jamison DT, Breman JG, Measham AR, et al., editors. Disease Control Priorities in Developing Countries. 2nd edition. Washington (DC): The International Bank for Reconstruction and Development/The World Bank. New York: Co-published by Oxford University Press; 2006.
12.
go back to reference WHO. Report Global tuberculosis control: Surveillance, Planning, Financing, World Health, Organization. Geneva: WHO; 2002. WHO. Report Global tuberculosis control: Surveillance, Planning, Financing, World Health, Organization. Geneva: WHO; 2002.
13.
go back to reference Lima GRD, de Sales IRP, Filho MRDC, de Jesus NZT, Falcao HD, Barbosa-Filho JM, Cabral AGS, Souto AL, Tavares JF, Batista LM. Bioactivities of the genus Combretum (Combretacea): A Review. Molecules. 2012;17:9142–206.CrossRef Lima GRD, de Sales IRP, Filho MRDC, de Jesus NZT, Falcao HD, Barbosa-Filho JM, Cabral AGS, Souto AL, Tavares JF, Batista LM. Bioactivities of the genus Combretum (Combretacea): A Review. Molecules. 2012;17:9142–206.CrossRef
14.
go back to reference Cock I.E. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacol 2015;23:203-229. Cock I.E. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacol 2015;23:203-229.
15.
go back to reference Masengu C, Zimba F, Mangoyi R, Mukanganyama S. Inhibitory Activity of Combretum zeyheri and its S9 Metabolites against Escherichia coli, Bacillus subtilis and Candida albicans. J Microbial Biochem Technol. 2014;6:228–35. doi:10.4172/1948-5948.1000149.CrossRef Masengu C, Zimba F, Mangoyi R, Mukanganyama S. Inhibitory Activity of Combretum zeyheri and its S9 Metabolites against Escherichia coli, Bacillus subtilis and Candida albicans. J Microbial Biochem Technol. 2014;6:228–35. doi:10.​4172/​1948-5948.​1000149.CrossRef
16.
go back to reference Mbwambo ZH, Mushi NF, Innocent E, Tewtrakul S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud, Ex A. Rich (Combretaceae). BMC Complement Altern Med. 2012;12:163.CrossRefPubMedPubMedCentral Mbwambo ZH, Mushi NF, Innocent E, Tewtrakul S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud, Ex A. Rich (Combretaceae). BMC Complement Altern Med. 2012;12:163.CrossRefPubMedPubMedCentral
17.
go back to reference Addullahi M, Saidu TB. Phytochemical determinations and antibacterial activities of the leaf extracts of Combretum molle and Gossypium Arboreum. Bayero J Pure Appl Sci. 2011;4:132–6. Addullahi M, Saidu TB. Phytochemical determinations and antibacterial activities of the leaf extracts of Combretum molle and Gossypium Arboreum. Bayero J Pure Appl Sci. 2011;4:132–6.
18.
go back to reference Amirkia V, Heinrich M. Alkaloids as drug-leads- A predictive structural and biodiversity-based analysis. Phytochem Lett. 2014;10:1874–3900.CrossRef Amirkia V, Heinrich M. Alkaloids as drug-leads- A predictive structural and biodiversity-based analysis. Phytochem Lett. 2014;10:1874–3900.CrossRef
19.
go back to reference Kittakoop P, Mhidol C, Ruchirawat S. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr Top Med Chem. 2014;14:239–52.CrossRefPubMed Kittakoop P, Mhidol C, Ruchirawat S. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr Top Med Chem. 2014;14:239–52.CrossRefPubMed
20.
go back to reference Liu X, Chen C, He W, Huang P, Liu M, Wang Q. Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek. 2012;102:447–61.CrossRefPubMed Liu X, Chen C, He W, Huang P, Liu M, Wang Q. Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek. 2012;102:447–61.CrossRefPubMed
21.
go back to reference Chaturvedi V, Dwivedi N, Tripathi RP, Sinha S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J Gen Appl Microbiol. 2007;53:333–7.CrossRefPubMed Chaturvedi V, Dwivedi N, Tripathi RP, Sinha S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J Gen Appl Microbiol. 2007;53:333–7.CrossRefPubMed
22.
go back to reference Harbone AJ. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Netherlands: Springer; 1988. XIV, 302. Harbone AJ. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Netherlands: Springer; 1988. XIV, 302.
23.
go back to reference Harbone AJ. Phytochemical methods: a guide to Modern Techniques of Plant Analysis. 2nd ed. London: Chapman and Hall Limited; 1973. p. 49–189. Harbone AJ. Phytochemical methods: a guide to Modern Techniques of Plant Analysis. 2nd ed. London: Chapman and Hall Limited; 1973. p. 49–189.
24.
go back to reference Martini N, Eloff JN. The preliminary isolation of several antibacterial compounds from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol. 1998;62:255–63.CrossRefPubMed Martini N, Eloff JN. The preliminary isolation of several antibacterial compounds from Combretum erythrophyllum (Combretaceae). J Ethnopharmacol. 1998;62:255–63.CrossRefPubMed
25.
go back to reference Berridge N. Tetrazolium dyes as tools in cell biology and new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52.CrossRefPubMed Berridge N. Tetrazolium dyes as tools in cell biology and new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52.CrossRefPubMed
26.
go back to reference Mortimer PGS, Piddock LJV. Comparison for the methods for measuring the accumulation of quinolones into Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother. 1991;28:639–53.CrossRefPubMed Mortimer PGS, Piddock LJV. Comparison for the methods for measuring the accumulation of quinolones into Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother. 1991;28:639–53.CrossRefPubMed
27.
go back to reference Oladosu P, Ibrahim K, Okolo P, Oladepo DK. Time-kill kinetics antibacterial study of Acacia nilotica. Afr J Microbiol. 2013;7:5248–52.CrossRef Oladosu P, Ibrahim K, Okolo P, Oladepo DK. Time-kill kinetics antibacterial study of Acacia nilotica. Afr J Microbiol. 2013;7:5248–52.CrossRef
28.
go back to reference Kumar JK, Devi Prasad AG, Chaturvedi V. Phytochemical screening of five medicinal legumes and their evaluation for in vitro anti-tubercular activity. AYU. 2014;35:98–102.CrossRefPubMedPubMedCentral Kumar JK, Devi Prasad AG, Chaturvedi V. Phytochemical screening of five medicinal legumes and their evaluation for in vitro anti-tubercular activity. AYU. 2014;35:98–102.CrossRefPubMedPubMedCentral
29.
go back to reference Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Isolation and elucidation of three triterpenoids and its antimycobacterial activity of Terminalia avicennioides. Am J Org Chem. 2012;2:14–20.CrossRef Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Isolation and elucidation of three triterpenoids and its antimycobacterial activity of Terminalia avicennioides. Am J Org Chem. 2012;2:14–20.CrossRef
30.
go back to reference Eloff JN, Masoko P. The diversity of antifungal compounds of six South African Terminalia species (Combretaceae) determined by bioautography. Afr J Biotechnol. 2005;4:1425–15. Eloff JN, Masoko P. The diversity of antifungal compounds of six South African Terminalia species (Combretaceae) determined by bioautography. Afr J Biotechnol. 2005;4:1425–15.
31.
go back to reference Masoko P, Nxumalo M. Validation of antimycobacterial plants used by traditional healers in three districts of the Limpopo province (South Africa). Evid Based Complement Alternat Med. 2013;2013(586247):1–7.CrossRef Masoko P, Nxumalo M. Validation of antimycobacterial plants used by traditional healers in three districts of the Limpopo province (South Africa). Evid Based Complement Alternat Med. 2013;2013(586247):1–7.CrossRef
32.
go back to reference Coulter ID, Willis EM. The rise and rise of complementary and alternative medicine: a sociological perspective. Med J Aust. 2004;180:587-89. Coulter ID, Willis EM. The rise and rise of complementary and alternative medicine: a sociological perspective. Med J Aust. 2004;180:587-89.
33.
go back to reference Maroyi A. An ethno-botanical survey of medicinal plants used by the people in Nhema communal area, Zimbabwe. J Ethnopharmacol. 2011;136:347–54.CrossRefPubMed Maroyi A. An ethno-botanical survey of medicinal plants used by the people in Nhema communal area, Zimbabwe. J Ethnopharmacol. 2011;136:347–54.CrossRefPubMed
34.
go back to reference Rogers CB, Verotta L, Chinyanga F, Millard M, Wolfender JL. Chemistry and biological properties of the African Comretaceae. University of Zimbabwe Publications: 1996;231-34. Rogers CB, Verotta L, Chinyanga F, Millard M, Wolfender JL. Chemistry and biological properties of the African Comretaceae. University of Zimbabwe Publications: 1996;231-34.
36.
go back to reference Ramos DF, Leitao GG, Costa FN, Abeu L, Villarreal JV, Leitao SG, Fernandez SLS, da Silva PEA. Investigation of the antimycobacterial activity of 36 plant extracts from the Brazilian Atlantic Forest. Braz J Pharm Sci. 2008;44:669–74. Ramos DF, Leitao GG, Costa FN, Abeu L, Villarreal JV, Leitao SG, Fernandez SLS, da Silva PEA. Investigation of the antimycobacterial activity of 36 plant extracts from the Brazilian Atlantic Forest. Braz J Pharm Sci. 2008;44:669–74.
37.
go back to reference Ohene-Agyei T, Mowla R, Rahman T, Venter H. Phytochemicals increase the antibacterial activity by acting on a drug efflux pump. Microbiol Open. 2014;3:885–96.CrossRef Ohene-Agyei T, Mowla R, Rahman T, Venter H. Phytochemicals increase the antibacterial activity by acting on a drug efflux pump. Microbiol Open. 2014;3:885–96.CrossRef
38.
go back to reference Rodrigues L, Ramos J, Couto I, Amaral MV MV. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol. 2011;11:1471–2180.CrossRef Rodrigues L, Ramos J, Couto I, Amaral MV MV. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol. 2011;11:1471–2180.CrossRef
39.
go back to reference Zhang I, Li X, Nikaido H. Efflux pump-mediated intrinsic drug resistant in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004;7:2415–23. Zhang I, Li X, Nikaido H. Efflux pump-mediated intrinsic drug resistant in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004;7:2415–23.
40.
go back to reference Titgemeyer F, Amon J, Parche S, Mahfound M, Bail J, Schlicht W, Rehm N, Hilmann D, Stephan J, Walter B, Burkovski A, Niederweis M. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol. 2007;189:5903–15.CrossRefPubMedPubMedCentral Titgemeyer F, Amon J, Parche S, Mahfound M, Bail J, Schlicht W, Rehm N, Hilmann D, Stephan J, Walter B, Burkovski A, Niederweis M. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol. 2007;189:5903–15.CrossRefPubMedPubMedCentral
41.
go back to reference Garvey MI, Piddock LJV. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother. 2008;52:1677–85.CrossRefPubMedPubMedCentral Garvey MI, Piddock LJV. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob Agents Chemother. 2008;52:1677–85.CrossRefPubMedPubMedCentral
42.
go back to reference Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U. Efflux pumps of Mycobacterium tuberculosis play a significant role in anti-tuberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012;10:2643–51.CrossRef Balganesh M, Dinesh N, Sharma S, Kuruppath S, Nair AV, Sharma U. Efflux pumps of Mycobacterium tuberculosis play a significant role in anti-tuberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012;10:2643–51.CrossRef
43.
go back to reference Pandey AK, Kumar S. Perspective on Plant Products as Antimicrobials Agents: A Review. Pharmacologia. 2013;4:469–80.CrossRef Pandey AK, Kumar S. Perspective on Plant Products as Antimicrobials Agents: A Review. Pharmacologia. 2013;4:469–80.CrossRef
44.
go back to reference Szumowski JD., Adams KN, Edelstein PH, and Ramakrishnan L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: Evolutionary Considerations. Curr Top Microbiol Immunol. 2013. 374: 10.1007/82_2012_300 Szumowski JD., Adams KN, Edelstein PH, and Ramakrishnan L. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: Evolutionary Considerations. Curr Top Microbiol Immunol. 2013. 374: 10.​1007/​82_​2012_​300
45.
go back to reference Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, Zhao X, Lu J, Wan K. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 2015;10(2):e0119013.CrossRefPubMedPubMedCentral Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, Zhao X, Lu J, Wan K. Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One. 2015;10(2):e0119013.CrossRefPubMedPubMedCentral
Metadata
Title
Alkaloid extracts from Combretum zeyheri inhibit the growth of Mycobacterium smegmatis
Authors
Tafadzwa Nyambuya
Ruvimbo Mautsa
Stanley Mukanganyama
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1636-0

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue