Skip to main content
Top
Published in: Clinical Orthopaedics and Related Research® 12/2009

01-12-2009 | Symposium: Tribute to Dr. Marshall Urist: Musculoskeletal Growth Factors

Alendronate Enhances Osteogenic Differentiation of Bone Marrow Stromal Cells: A Preliminary Study

Authors: Hyung Keun Kim, PhD, Ji Hyun Kim, MS, Azlina Amir Abbas, MS (Ortho), Taek Rim Yoon, MD

Published in: Clinical Orthopaedics and Related Research® | Issue 12/2009

Login to get access

Abstract

Alendronate inhibits osteoclastic activity. However, some studies suggest alendronate also has effects on osteoblast activity. We hypothesized alendronate would enhance osteoblastic differentiation without causing cytotoxicity of the osteoblasts. We evaluated the effect of alendronate on the osteogenic differentiation of mouse mesenchymal stem cells. D1 cells (multipotent mouse mesenchymal stem cells) were cultured in osteogenic differentiation medium for 7 days and then treated with alendronate for 2 days before being subjected to various tests using MTT assays, Alizarin Red, enzyme-linked immunosorbent assay, energy-dispersive xray spectrophotometry, reverse transcriptase–polymerase chain reaction, confocal microscopy, and flow cytometric analysis. D1 cells differentiated into osteoblasts in the presence of osteogenic differentiation medium as confirmed by positive Alizarin Red S staining, increased alkaline phosphatase activity and osteocalcin mRNA expression, a calcium peak by energy-dispersive xray spectrophotometry, and by positive immunofluorescence staining against CD44. Osteogenic differentiation was enhanced after treatment with alendronate as confirmed by Alizarin Red S staining, elevated alkaline phosphatase activity and osteocalcin mRNA expression, a greater calcium peak by energy-dispersive xray spectrophotometry, and by immunofluorescence staining against CD44 by flow cytometric analysis. These data suggest alendronate enhances osteogenic differentiation when treated with mouse mesenchymal stem cells in osteogenic differentiation medium.
Literature
1.
go back to reference Adamia S, Maxwell CA, Pilarski LM. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:3–14.CrossRefPubMed Adamia S, Maxwell CA, Pilarski LM. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:3–14.CrossRefPubMed
2.
go back to reference Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996;348:1535–1541.CrossRefPubMed Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996;348:1535–1541.CrossRefPubMed
3.
go back to reference Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–1199.CrossRefPubMed Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–1199.CrossRefPubMed
4.
go back to reference Boonekamp PM, van der Wee-Pals LJ, van Wijk-van Lennep MM, Thesing CW, Bijvoet OL. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner. 1986;1:27–39.PubMed Boonekamp PM, van der Wee-Pals LJ, van Wijk-van Lennep MM, Thesing CW, Bijvoet OL. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner. 1986;1:27–39.PubMed
5.
go back to reference Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int. 2005;16:2039–2045.CrossRefPubMed Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int. 2005;16:2039–2045.CrossRefPubMed
6.
go back to reference Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodontol. 1996;23:492–496.CrossRefPubMed Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodontol. 1996;23:492–496.CrossRefPubMed
7.
go back to reference Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, Palermo L, Prineas R, Rubin SM, Scott JC, Vogt T, Wallace R, Yates AJ, LaCroix AZ. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280:2077–2082.CrossRefPubMed Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, Palermo L, Prineas R, Rubin SM, Scott JC, Vogt T, Wallace R, Yates AJ, LaCroix AZ. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280:2077–2082.CrossRefPubMed
8.
go back to reference Dahir GA, Cui Q, Anderson P, Simon C, Joyner C, Triffitt JT, Balian G. Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop Relat Res. 2000;379(suppl):S134–S145.CrossRefPubMed Dahir GA, Cui Q, Anderson P, Simon C, Joyner C, Triffitt JT, Balian G. Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop Relat Res. 2000;379(suppl):S134–S145.CrossRefPubMed
9.
go back to reference Delos D, Yang X, Ricciardi BF, Myers ER, Bostrom MP, Camacho NP. The effects of RANKL inhibition on fracture healing and bone strength in a mouse model of osteogenesis imperfecta. J Orthop Res. 2008;26:153–164.CrossRefPubMed Delos D, Yang X, Ricciardi BF, Myers ER, Bostrom MP, Camacho NP. The effects of RANKL inhibition on fracture healing and bone strength in a mouse model of osteogenesis imperfecta. J Orthop Res. 2008;26:153–164.CrossRefPubMed
10.
go back to reference Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA. 2004;101:5140–5145.CrossRefPubMed Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA. 2004;101:5140–5145.CrossRefPubMed
11.
go back to reference Evans CE, Braidman IP. Effects of two novel bisphosphonates on bone cells in vitro. Bone Miner. 1994;26:95–107.CrossRefPubMed Evans CE, Braidman IP. Effects of two novel bisphosphonates on bone cells in vitro. Bone Miner. 1994;26:95–107.CrossRefPubMed
12.
go back to reference Fast DK, Felix R, Dowse C, Neuman WF, Fleisch H. The effects of diphosphonates on the growth and glycolysis of connective tissue cells in culture. Biochem J. 1978;172:97–107.PubMed Fast DK, Felix R, Dowse C, Neuman WF, Fleisch H. The effects of diphosphonates on the growth and glycolysis of connective tissue cells in culture. Biochem J. 1978;172:97–107.PubMed
13.
go back to reference Felix R, Guenther HL, Fleisch H. The subcellular distribution of [14C]dichloromethylene bisphosphonate and [14C]1-hydroxyethylidene-1,1-bisphosphonate in cultured calvaria cells. Calcif Tissue Int. 1984;36:108–113.CrossRefPubMed Felix R, Guenther HL, Fleisch H. The subcellular distribution of [14C]dichloromethylene bisphosphonate and [14C]1-hydroxyethylidene-1,1-bisphosphonate in cultured calvaria cells. Calcif Tissue Int. 1984;36:108–113.CrossRefPubMed
14.
go back to reference Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RG, Rodan GA, Reszka AA. Alendronate mechanism of action: geranylgeraniol, an intermediate in the melavonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA. 1999;96:133–138.CrossRefPubMed Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RG, Rodan GA, Reszka AA. Alendronate mechanism of action: geranylgeraniol, an intermediate in the melavonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA. 1999;96:133–138.CrossRefPubMed
15.
go back to reference Fromigue O, Body JJ. Bisphosphonates influence the proliferation and the maturation of normal human osteoblasts. J Endocrinol Invest. 2002;25:539–546.PubMed Fromigue O, Body JJ. Bisphosphonates influence the proliferation and the maturation of normal human osteoblasts. J Endocrinol Invest. 2002;25:539–546.PubMed
16.
go back to reference Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G. Biphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone. 1998;22:455–461.CrossRefPubMed Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G. Biphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone. 1998;22:455–461.CrossRefPubMed
17.
go back to reference Gundberg CM, Hauschka PV, Lian JB, Gallop PM. Osteocalcin: isolation, characterization, and detection. Methods Enzymol. 1984;107:516–544.CrossRefPubMed Gundberg CM, Hauschka PV, Lian JB, Gallop PM. Osteocalcin: isolation, characterization, and detection. Methods Enzymol. 1984;107:516–544.CrossRefPubMed
18.
go back to reference Hughes DE, MacDonald BR, Russell RG, Growen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest. 1989;83:1930–1935.CrossRefPubMed Hughes DE, MacDonald BR, Russell RG, Growen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest. 1989;83:1930–1935.CrossRefPubMed
19.
go back to reference Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10:1478–1487.PubMedCrossRef Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10:1478–1487.PubMedCrossRef
20.
go back to reference Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004;25:4105–4115.CrossRefPubMed Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004;25:4105–4115.CrossRefPubMed
21.
go back to reference Jamal HH, Aubin JE. CD44 Expression in fetal rat bone: in vivo and in vitro analysis. Exp Cell Res. 1996;223:467–477.CrossRefPubMed Jamal HH, Aubin JE. CD44 Expression in fetal rat bone: in vivo and in vitro analysis. Exp Cell Res. 1996;223:467–477.CrossRefPubMed
22.
go back to reference Karu T. High-tech helps to estimate cellular mechanisms of low power laser therapy. Lasers Surg Med. 2004;34:298–299.CrossRefPubMed Karu T. High-tech helps to estimate cellular mechanisms of low power laser therapy. Lasers Surg Med. 2004;34:298–299.CrossRefPubMed
23.
go back to reference Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13:581–589.CrossRefPubMed Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13:581–589.CrossRefPubMed
24.
go back to reference Mackie PS, Fisher JL, Zhou H, Choong PF. Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer. 2001;84:951–958.CrossRefPubMed Mackie PS, Fisher JL, Zhou H, Choong PF. Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer. 2001;84:951–958.CrossRefPubMed
25.
go back to reference Mathov I, Plotkin LI, Sgarlata CL, Leoni J, Bellido T. Extracellular signal-regulated kinases and calcium channels are involved in the proliferative effect of bisphosphonates on osteoblastic cells in vitro. J Bone Miner Res. 2001;16:2050–2056.CrossRefPubMed Mathov I, Plotkin LI, Sgarlata CL, Leoni J, Bellido T. Extracellular signal-regulated kinases and calcium channels are involved in the proliferative effect of bisphosphonates on osteoblastic cells in vitro. J Bone Miner Res. 2001;16:2050–2056.CrossRefPubMed
26.
go back to reference Mester E, Jaszsagi-Nagy E. The effects of laser radiation on wound healing and collagen synthesis. Studia Biophys. 1973;35:227–230. Mester E, Jaszsagi-Nagy E. The effects of laser radiation on wound healing and collagen synthesis. Studia Biophys. 1973;35:227–230.
27.
go back to reference Naidu A, Dechow PC, Spears R, Wright JM, Kessler HP, Opperman LA. The effects of bisphosphonates on osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:829–837.CrossRef Naidu A, Dechow PC, Spears R, Wright JM, Kessler HP, Opperman LA. The effects of bisphosphonates on osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:829–837.CrossRef
28.
go back to reference Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben Haim S. Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Laser Surg Med. 2001;28:204–211.CrossRef Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben Haim S. Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Laser Surg Med. 2001;28:204–211.CrossRef
29.
go back to reference Otsuru S, Tamai K, Yamazaki T, Yoshikawa H, Kaneda Y. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells. 2008;26:223–234.CrossRefPubMed Otsuru S, Tamai K, Yamazaki T, Yoshikawa H, Kaneda Y. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells. 2008;26:223–234.CrossRefPubMed
30.
go back to reference Owen TA, Holthuis J, Markose E, van Wijnen AJ, Wolfe SA, Grimes SR, Lian JB, Stein GS. Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci USA. 1990;87:5129–5133.CrossRefPubMed Owen TA, Holthuis J, Markose E, van Wijnen AJ, Wolfe SA, Grimes SR, Lian JB, Stein GS. Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci USA. 1990;87:5129–5133.CrossRefPubMed
31.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.CrossRefPubMed
32.
go back to reference Plasmans CM, Jap PH, Kuijpers W, Slooff TJ. Influence of a diphosphonate on the cellular aspect of young bone tissue. Calcif Tissue Int. 1980;32:247–266.CrossRefPubMed Plasmans CM, Jap PH, Kuijpers W, Slooff TJ. Influence of a diphosphonate on the cellular aspect of young bone tissue. Calcif Tissue Int. 1980;32:247–266.CrossRefPubMed
33.
go back to reference Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–1374.CrossRefPubMed Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–1374.CrossRefPubMed
34.
go back to reference Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60:6001–6007.PubMed Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60:6001–6007.PubMed
35.
36.
go back to reference Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, Golub E, Rodan GA. Bisphosphonate action: alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991;88:2095–2105.CrossRefPubMed Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, Golub E, Rodan GA. Bisphosphonate action: alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991;88:2095–2105.CrossRefPubMed
37.
go back to reference Schmidt A, Rutledge SJ, Endo N, Opas EE, Tanaka H, Wesolowski G, Leu CT, Huang Z, Ramachandaran C, Rodan SB, Rodan GA. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc Nat Acad Sci USA. 1996;93:3068–3073.CrossRefPubMed Schmidt A, Rutledge SJ, Endo N, Opas EE, Tanaka H, Wesolowski G, Leu CT, Huang Z, Ramachandaran C, Rodan SB, Rodan GA. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc Nat Acad Sci USA. 1996;93:3068–3073.CrossRefPubMed
38.
go back to reference Shanbhag AS. Use of bisphosphonates to improve the durability of total joint replacements. J Am Acad Orthop Surg. 2006;14:215–225.PubMed Shanbhag AS. Use of bisphosphonates to improve the durability of total joint replacements. J Am Acad Orthop Surg. 2006;14:215–225.PubMed
39.
go back to reference Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterial and bone mechanotransduction. Biomaterials. 2001;22:2581–2593.CrossRefPubMed Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterial and bone mechanotransduction. Biomaterials. 2001;22:2581–2593.CrossRefPubMed
40.
go back to reference van Beek E, Lowik C, van der Pluijm G, Papapoulos S. The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res. 1999;14:722–729.CrossRef van Beek E, Lowik C, van der Pluijm G, Papapoulos S. The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res. 1999;14:722–729.CrossRef
41.
go back to reference von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, Rubash HE, Shanbhag AS. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26:6941–6949.CrossRef von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, Rubash HE, Shanbhag AS. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26:6941–6949.CrossRef
Metadata
Title
Alendronate Enhances Osteogenic Differentiation of Bone Marrow Stromal Cells: A Preliminary Study
Authors
Hyung Keun Kim, PhD
Ji Hyun Kim, MS
Azlina Amir Abbas, MS (Ortho)
Taek Rim Yoon, MD
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
Clinical Orthopaedics and Related Research® / Issue 12/2009
Print ISSN: 0009-921X
Electronic ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-008-0409-y

Other articles of this Issue 12/2009

Clinical Orthopaedics and Related Research® 12/2009 Go to the issue

Symposium: Tribute to Dr. Marshall Urist: Musculoskeletal Growth Factors

Are Endogenous BMPs Necessary for Bone Healing during Distraction Osteogenesis?

Symposium: Tribute to Dr. Marshall Urist: Musculoskeletal Growth Factors

The Classic: A Morphogenetic Matrix for Differentiation of Cartilage in Tissue Culture

Symposium: Tribute to Dr. Marshall Urist: Musculoskeletal Growth Factors

The Classic: A Morphogenetic Matrix for Differentiation of Bone Tissue