Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Research

Aldosterone inhibits Dot1l expression in guinea pig cochlea

Authors: Shixun Zhong, Biyun Zhang, Li Qin, Qianying Wang, Xiaoli Luo

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Aldosterone relieves transcriptional repression of epithelial sodium channel (ENaC) by inhibiting Dot1a and Af9 expression and their interaction with ENaC promoter in various tissues. Expressions of ENaC and Af9 in inner ear have been identified. However, it is not known how Dot1l is regulated by aldosterone in inner ear.

Methods

Twenty-eight adult guinea pigs were randomly divided into the control group and treatment group. Aldosterone 1 mg/kg/d was injected intraperitoneally in the treatment group and saline in the control group for 7 days. Animals were killed 1 month later following auditory brainstem response examination. Histomorphology of cochlea was detected with hematoxylin–eosin staining, and Dot1l expression was examined with immunohistochemistry and Western blot.

Results

There was no significant difference in ABR thresholds before and after injection of aldosterone or saline in either group. Endolymphatic hydrops was found in 75% of animals in the treatment group. Dot1l was found in both groups in the stria vascularis, Reissner’s membrane, spiral limbus, organ of Corti and spiral ligament. Dot1l expression in the treatment group was decreased by aldosterone.

Conclusions

Dot1l in guinea pig cochlea is inhibited by aldosterone with induction of endolymphatic hydrops. Dot1l may be closely related to endolymph regulation by aldosterone and to pathogenesis of Meniere’s disease.
Literature
1.
go back to reference Zhong SX, Hu GH, Liu ZH. Expression of ENaC, SGK1 and Nedd4 Isoforms in the cochlea of guinea pig. Folia Histochem Cyto. 2014;52:144–8.CrossRef Zhong SX, Hu GH, Liu ZH. Expression of ENaC, SGK1 and Nedd4 Isoforms in the cochlea of guinea pig. Folia Histochem Cyto. 2014;52:144–8.CrossRef
2.
go back to reference Zhong SX, Liu ZH. Immunohistochemical localization of the epithelial sodium channel in the rat inner ear. Hear Res. 2004;193(1–2):1–8.CrossRef Zhong SX, Liu ZH. Immunohistochemical localization of the epithelial sodium channel in the rat inner ear. Hear Res. 2004;193(1–2):1–8.CrossRef
3.
go back to reference Zhang WZ, Hayashizaki Y, Kone BC. Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase. Biochem J. 2004;377:641–51.CrossRef Zhang WZ, Hayashizaki Y, Kone BC. Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase. Biochem J. 2004;377:641–51.CrossRef
4.
go back to reference Janzen CJ, Hake SB, Lowell JE, Cross GAM. Selective di- or trimethylation of histone H3 lysine 76 by two Dot1 homologs is important for cell cycle regulation in Trypanosoma brucei. Mol Cell. 2006;23:497–507.CrossRef Janzen CJ, Hake SB, Lowell JE, Cross GAM. Selective di- or trimethylation of histone H3 lysine 76 by two Dot1 homologs is important for cell cycle regulation in Trypanosoma brucei. Mol Cell. 2006;23:497–507.CrossRef
5.
go back to reference Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H. Characterization of the grappa gene, the Drosophila histone H3 lysine79 methyltransferase. Genetics. 2005;169:173–84.CrossRef Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H. Characterization of the grappa gene, the Drosophila histone H3 lysine79 methyltransferase. Genetics. 2005;169:173–84.CrossRef
6.
go back to reference Zhang W, Xia X, Jalal DI, Kuncewicz K, Xu W, Lesage D, et al. Aldosterone-sensitive repression of ENaC transcription by a histone H3 lysine-79 methyltransferase. Am J Physiol Cell Physiol. 2006;290:936–46.CrossRef Zhang W, Xia X, Jalal DI, Kuncewicz K, Xu W, Lesage D, et al. Aldosterone-sensitive repression of ENaC transcription by a histone H3 lysine-79 methyltransferase. Am J Physiol Cell Physiol. 2006;290:936–46.CrossRef
7.
go back to reference Zhang W, Yu Z, Wu H, Chen L, Kong Q, Kone BC. An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the αENaC gene. Am J Physiol Renal Physiol. 2013;304:367–75.CrossRef Zhang W, Yu Z, Wu H, Chen L, Kong Q, Kone BC. An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the αENaC gene. Am J Physiol Renal Physiol. 2013;304:367–75.CrossRef
8.
go back to reference Qin L, Zhang B, Wang Q, Li D, Luo X, Zhong S. Effect of aldosterone on cochlear Af9 expression and hearing in guinea pig. Acta Otolryngol. 2017;137:903–9.CrossRef Qin L, Zhang B, Wang Q, Li D, Luo X, Zhong S. Effect of aldosterone on cochlear Af9 expression and hearing in guinea pig. Acta Otolryngol. 2017;137:903–9.CrossRef
9.
go back to reference Takumida M, Akagi N, Anniko M. A new animal model for Ménière’s disease. Acta Otolaryngol. 2008;128:263–71.CrossRef Takumida M, Akagi N, Anniko M. A new animal model for Ménière’s disease. Acta Otolaryngol. 2008;128:263–71.CrossRef
10.
go back to reference Takeda T, Takeda S, Kinato H, Okada T, Kakigi A. Endolymphatic hydrops induced by chronic administration of vasopressin. Hear Res. 2000;140:1–6.CrossRef Takeda T, Takeda S, Kinato H, Okada T, Kakigi A. Endolymphatic hydrops induced by chronic administration of vasopressin. Hear Res. 2000;140:1–6.CrossRef
11.
go back to reference Marshall AF, Jewells VL, Kranz P, Lee YZ, Lin W, Zdanski CJ. Magnetic resonance imaging of guinea pig cochlea after vasopressin-induced or surgically induced endolymphatic hydrops. Otolaryngol Head Neck Surg. 2010;142:260–350.CrossRef Marshall AF, Jewells VL, Kranz P, Lee YZ, Lin W, Zdanski CJ. Magnetic resonance imaging of guinea pig cochlea after vasopressin-induced or surgically induced endolymphatic hydrops. Otolaryngol Head Neck Surg. 2010;142:260–350.CrossRef
12.
go back to reference Dunnebier EA, Segenhout JM, Wit HP, Albers FW. Two-phase endolymphatic hydrops: a new dynamic guinea pig model. Acta Otolryngol. 1997;117:13–9.CrossRef Dunnebier EA, Segenhout JM, Wit HP, Albers FW. Two-phase endolymphatic hydrops: a new dynamic guinea pig model. Acta Otolryngol. 1997;117:13–9.CrossRef
13.
go back to reference Kim SH, Marcus DC. Regulation of sodium transport in the inner ear. Hear Res. 2011;280:21–9.CrossRef Kim SH, Marcus DC. Regulation of sodium transport in the inner ear. Hear Res. 2011;280:21–9.CrossRef
14.
go back to reference Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G. Mechanisms of aldosterone’s action on epithelial Na+ transport. J Membr Biol. 2001;3:313–9.CrossRef Eaton DC, Malik B, Saxena NC, Al-Khalili OK, Yue G. Mechanisms of aldosterone’s action on epithelial Na+ transport. J Membr Biol. 2001;3:313–9.CrossRef
15.
go back to reference Yao X, Rarey KE. Localization of the mineralocorticoid receptor in rat cochlear tissue. Acta Otolaryngol. 1996;116:493–6.CrossRef Yao X, Rarey KE. Localization of the mineralocorticoid receptor in rat cochlear tissue. Acta Otolaryngol. 1996;116:493–6.CrossRef
16.
go back to reference Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, et al. Aldosterone- induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest. 2007;117:773–83.CrossRef Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, et al. Aldosterone- induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest. 2007;117:773–83.CrossRef
17.
go back to reference Reisenauer MR, Anderson M, Huang L, Zhang Z, Zhou Q, Kone BC, et al. AF17 competes with AF9 for binding to Dot1a to up-regulate transcription of epithelial Na+ channel. J Biol Chem. 2009;284:35659–69.CrossRef Reisenauer MR, Anderson M, Huang L, Zhang Z, Zhou Q, Kone BC, et al. AF17 competes with AF9 for binding to Dot1a to up-regulate transcription of epithelial Na+ channel. J Biol Chem. 2009;284:35659–69.CrossRef
18.
go back to reference Zhang D, Li S, Cruz P, Kone B. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate α-ENaC transcription in collecting duct. J Biol Chem. 2009;284:20917–26.CrossRef Zhang D, Li S, Cruz P, Kone B. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate α-ENaC transcription in collecting duct. J Biol Chem. 2009;284:20917–26.CrossRef
19.
go back to reference Okada Y, Feng Q, Lin YH, Jiang Q, Li Y, Coffield VM, et al. hDot1L links histone methylation to leukemogenesis. Cell. 2005;121:167–78.CrossRef Okada Y, Feng Q, Lin YH, Jiang Q, Li Y, Coffield VM, et al. hDot1L links histone methylation to leukemogenesis. Cell. 2005;121:167–78.CrossRef
20.
go back to reference Daigle SR, Olhava EJ, Therkelsen CA, Basavapathrun A, Jin L, Boriack-Sjodin PA, et al. Potent inhibition of Dot1L as treatment of MLL-fusion leukemia. Blood. 2013;122:1017–25.CrossRef Daigle SR, Olhava EJ, Therkelsen CA, Basavapathrun A, Jin L, Boriack-Sjodin PA, et al. Potent inhibition of Dot1L as treatment of MLL-fusion leukemia. Blood. 2013;122:1017–25.CrossRef
21.
go back to reference Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, et al. The Dot1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 2018;131:2661–9.CrossRef Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, et al. The Dot1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 2018;131:2661–9.CrossRef
Metadata
Title
Aldosterone inhibits Dot1l expression in guinea pig cochlea
Authors
Shixun Zhong
Biyun Zhang
Li Qin
Qianying Wang
Xiaoli Luo
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-00994-y

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue