Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2016

Open Access 01-12-2016 | Research article

Albumin-glutaraldehyde glue for repair of superficial lung defect: an in vitro experiment

Authors: Maximilian Bures, Hans-Klaus Höffler, Godehard Friedel, Thomas Kyriss, Enole Boedeker, Florian Länger, Patrick Zardo, Ruoyu Zhang

Published in: Journal of Cardiothoracic Surgery | Issue 1/2016

Login to get access

Abstract

Background

Albumin-glutaraldehyde glue gained a widespread acceptance in repair of superficial lung defects associated with alveolar air leaks (AAL). As its sealing efficacy has not yet been thoroughly corroborated by clinical studies, we sought to assess the properties of commercially available albumin-glutaraldehyde glue (BioGlue™) in an in vitro lung model.

Methods

The lower lobe of freshly excised swine lung (n = 10) was intubated and ventilated. A focal superficial parenchymal defect (40 × 25 mm) was created on the inflated lung. AAL was assessed with increasing inspired tidal volume (TVi). After glue application, AAL was assessed until burst failure occurred. To evaluate glue elasticity, the length of defect was recorded in the inflated lung.

Results

Superficial parenchymal defects resulted in AAL increasing with ascending TVi. Multiple linear regression analysis revealed strong correlation between AAL and maximal inspiratory pressure. There was one application error. At TVi = 400, 500, 600, 700, 800 and 900 ml, BioGlue™ achieved complete sealing in nine, six, five, four two and one specimens, respectively. Mean burst pressure was 38.0 ± 4.2 cmH2O. All sealant failures were cohesive. BioGlue™ allowed an expansion of covered lung defects of 1.5 ± 1.7 mm.

Conclusions

Our in vitro tests demonstrated a high sealing efficacy of BioGlue™ for repair of superficial lung defects. Due to the rigid nature, caution should be taken to use this kind of sealant in trapped lungs.
Literature
1.
go back to reference Abolhoda A, Liu D, Brooks A, Burt M. Prolonged air leak following radical upper lobectomy. Chest. 1998;113(6):1507–10.CrossRefPubMed Abolhoda A, Liu D, Brooks A, Burt M. Prolonged air leak following radical upper lobectomy. Chest. 1998;113(6):1507–10.CrossRefPubMed
2.
go back to reference Bardell T, Persikas D. What keeps postpulmonary resection patients in hospital. Can Respir J. 2003;10:86–9.CrossRefPubMed Bardell T, Persikas D. What keeps postpulmonary resection patients in hospital. Can Respir J. 2003;10:86–9.CrossRefPubMed
3.
go back to reference Okereke I, Murthy SC, Alster JM, Blackstone EH, Rice TW. Characterization and importance of air leak after lobectomy. Ann Thorac Surg. 2005;79:1167–73.CrossRefPubMed Okereke I, Murthy SC, Alster JM, Blackstone EH, Rice TW. Characterization and importance of air leak after lobectomy. Ann Thorac Surg. 2005;79:1167–73.CrossRefPubMed
4.
go back to reference Annegg U, Lindenmann J, Matzi V, Smolle J, Maier A, Smolle-Juttner F. Efficiency of fleece bound sealing (TachoSil) of air leaks in lung surgery: a prospective randomised trial. Eur J Cardiothorac Surg. 2007;31:198–202.CrossRef Annegg U, Lindenmann J, Matzi V, Smolle J, Maier A, Smolle-Juttner F. Efficiency of fleece bound sealing (TachoSil) of air leaks in lung surgery: a prospective randomised trial. Eur J Cardiothorac Surg. 2007;31:198–202.CrossRef
5.
go back to reference Belda Sanchís J, Serra-Mitjans M, Iglesias Sentis M, Rami R. Surgical sealant for preventing air leaks after pulmonary resections in patients with lung cancer. Cochrane Database Syst Rev. 2010;1:CD003051.PubMed Belda Sanchís J, Serra-Mitjans M, Iglesias Sentis M, Rami R. Surgical sealant for preventing air leaks after pulmonary resections in patients with lung cancer. Cochrane Database Syst Rev. 2010;1:CD003051.PubMed
6.
go back to reference Malapert G, Hanna HA, Pages PB, Bernard A. Surgical sealant for the prevention of prolonged air leak after lung resection: meta-analysis. Ann Thorac Surg. 2010;90:1779–85.CrossRefPubMed Malapert G, Hanna HA, Pages PB, Bernard A. Surgical sealant for the prevention of prolonged air leak after lung resection: meta-analysis. Ann Thorac Surg. 2010;90:1779–85.CrossRefPubMed
7.
go back to reference Rocco G, Rendina EA, Venuta F, Mueller MR, Halezeroglu S, Dienemann H, et al. The use of sealants in modern thoracic surgery: a survey. Interact Cardiovasc Thoracic Surg. 2009;9:1–3.CrossRef Rocco G, Rendina EA, Venuta F, Mueller MR, Halezeroglu S, Dienemann H, et al. The use of sealants in modern thoracic surgery: a survey. Interact Cardiovasc Thoracic Surg. 2009;9:1–3.CrossRef
8.
go back to reference Zhang R, Bures M, Höffler HK, Zinne N, Langer F, Bisdas T, et al. TissuePatch™ as a novel synthetic sealant for repair of superficial lung defect: in vitro tests results. Ann Surg Innov Res. 2012;6:12.CrossRefPubMedPubMedCentral Zhang R, Bures M, Höffler HK, Zinne N, Langer F, Bisdas T, et al. TissuePatch™ as a novel synthetic sealant for repair of superficial lung defect: in vitro tests results. Ann Surg Innov Res. 2012;6:12.CrossRefPubMedPubMedCentral
9.
go back to reference Chao HH, Torchiana DF. BioGlue: albumin/glutaraldehyde sealant in cardiac surgery. J Card Surg. 2003;18(6):500–3.CrossRefPubMed Chao HH, Torchiana DF. BioGlue: albumin/glutaraldehyde sealant in cardiac surgery. J Card Surg. 2003;18(6):500–3.CrossRefPubMed
10.
go back to reference Raanani E, Georghiou GP, Kogan A, Wandwi B, Shapira Y, Vidne BA. BioGlue for the repair of aortic insufficiency in acute aortic dissection. J Heart Valve Dis. 2004;13:734–7.PubMed Raanani E, Georghiou GP, Kogan A, Wandwi B, Shapira Y, Vidne BA. BioGlue for the repair of aortic insufficiency in acute aortic dissection. J Heart Valve Dis. 2004;13:734–7.PubMed
11.
go back to reference Bhamidipati CM, Coselli JS, LaMaire SA. BioGlue in 2011: what is its role in cardiac surgery? J Extra Corpor Technol. 2012;44:6–12. Bhamidipati CM, Coselli JS, LaMaire SA. BioGlue in 2011: what is its role in cardiac surgery? J Extra Corpor Technol. 2012;44:6–12.
12.
go back to reference Tokunaga S, Yasuga S, Masuda M. Devised reinforcement of distal stump in total arch replacement using BioGlue. Asian Cardiovasc Thorac Ann. 2013;22:755–7.CrossRefPubMed Tokunaga S, Yasuga S, Masuda M. Devised reinforcement of distal stump in total arch replacement using BioGlue. Asian Cardiovasc Thorac Ann. 2013;22:755–7.CrossRefPubMed
13.
go back to reference D’Andrilli A, Venuta F, Rendina E. Use of Sealants to Reduce Air Leak Duration and Hospital Stay After Lung Resection. In: Ferguson MK, editor. Difficult Decisions in Thoracic Surgery: An Evidence-Based Approach. London: Springer; 2011. p. 375–83.CrossRef D’Andrilli A, Venuta F, Rendina E. Use of Sealants to Reduce Air Leak Duration and Hospital Stay After Lung Resection. In: Ferguson MK, editor. Difficult Decisions in Thoracic Surgery: An Evidence-Based Approach. London: Springer; 2011. p. 375–83.CrossRef
14.
go back to reference Macchiarini P, Wain J, Almy S, Dartevelle P. Experimental and clinical evaluation of a new synthetic, absorbable sealant to reduce air leaks in thoracic operations. J Thorac Cardiovasc Surg. 1999;117:751–8.CrossRefPubMed Macchiarini P, Wain J, Almy S, Dartevelle P. Experimental and clinical evaluation of a new synthetic, absorbable sealant to reduce air leaks in thoracic operations. J Thorac Cardiovasc Surg. 1999;117:751–8.CrossRefPubMed
15.
go back to reference Varela G, Jinénez MF, Novoa N, Aranda JL. Estimating hospital cost attributable to prolonged air leak in pulmonary lobectomy. Eur J Cardiothorac Surg. 2005;27:329–33.CrossRefPubMed Varela G, Jinénez MF, Novoa N, Aranda JL. Estimating hospital cost attributable to prolonged air leak in pulmonary lobectomy. Eur J Cardiothorac Surg. 2005;27:329–33.CrossRefPubMed
16.
go back to reference Potaris K, Mihos P, Gakidis I. Preliminary results with the use of an albumin-glutaraldehyde tissue adhesive in lung surgery. Med Sci Monit. 2003;9:179–83. Potaris K, Mihos P, Gakidis I. Preliminary results with the use of an albumin-glutaraldehyde tissue adhesive in lung surgery. Med Sci Monit. 2003;9:179–83.
17.
go back to reference Rathinam S, Naidu BV, Nanjaiah P, Loubani M, Kalkat MS, Rajesh PB. BioGlue and Peri-strips in lung volume reduction surgery: pilot randomised controlled trial. J Cardiothorac Surg. 2009;4:37.CrossRefPubMedPubMedCentral Rathinam S, Naidu BV, Nanjaiah P, Loubani M, Kalkat MS, Rajesh PB. BioGlue and Peri-strips in lung volume reduction surgery: pilot randomised controlled trial. J Cardiothorac Surg. 2009;4:37.CrossRefPubMedPubMedCentral
18.
go back to reference Tansley P, Al Mulhim F, Lim E, Ladas G, Goldstraw P. A prospective, randomized, controlled trial of the effectiveness of BioGlue in treating alveolar air leaks. J Thorac Cardiovasc Surg. 2006;132:105–12.CrossRefPubMed Tansley P, Al Mulhim F, Lim E, Ladas G, Goldstraw P. A prospective, randomized, controlled trial of the effectiveness of BioGlue in treating alveolar air leaks. J Thorac Cardiovasc Surg. 2006;132:105–12.CrossRefPubMed
19.
go back to reference Allen MS, Wood DE, Hawkinson RW, Harpole DH, McKenna RJ, Walsh GL, et al. Prospective randomized study evaluating a biodegradable polymeric sealant for sealing intraoperative air leaks that occur during pulmonary resection. Ann Thorac Surg. 2004;77:1792–801.CrossRefPubMed Allen MS, Wood DE, Hawkinson RW, Harpole DH, McKenna RJ, Walsh GL, et al. Prospective randomized study evaluating a biodegradable polymeric sealant for sealing intraoperative air leaks that occur during pulmonary resection. Ann Thorac Surg. 2004;77:1792–801.CrossRefPubMed
20.
go back to reference Belcher E, Dusmet M, Jordan S, Ladas G, Lim E, Goldstraw P. A prospective, randomized trial comparing BioGlue and Vivostat for the control of alveolar air leak. J Thorac Cardiovasc Surg. 2010;140:32–8.CrossRefPubMed Belcher E, Dusmet M, Jordan S, Ladas G, Lim E, Goldstraw P. A prospective, randomized trial comparing BioGlue and Vivostat for the control of alveolar air leak. J Thorac Cardiovasc Surg. 2010;140:32–8.CrossRefPubMed
21.
go back to reference Azadani AM, Matthews PB, Ge L, Shen Y, Jhun CS, Guy TS, et al. Mechanical properties of surgical glues used in aortic root replacement. Ann Thorac Surg. 2012;87:1154–60.CrossRef Azadani AM, Matthews PB, Ge L, Shen Y, Jhun CS, Guy TS, et al. Mechanical properties of surgical glues used in aortic root replacement. Ann Thorac Surg. 2012;87:1154–60.CrossRef
22.
go back to reference Fürst W, Banerjee A. Release of Glutaraldehyde From an Albumin-Glutaraldehyde Tissue Adhesive Causes Significant In Vitro and In Vivo Toxicity. Ann Thorac Surg. 2005;79:1522–9.CrossRefPubMed Fürst W, Banerjee A. Release of Glutaraldehyde From an Albumin-Glutaraldehyde Tissue Adhesive Causes Significant In Vitro and In Vivo Toxicity. Ann Thorac Surg. 2005;79:1522–9.CrossRefPubMed
Metadata
Title
Albumin-glutaraldehyde glue for repair of superficial lung defect: an in vitro experiment
Authors
Maximilian Bures
Hans-Klaus Höffler
Godehard Friedel
Thomas Kyriss
Enole Boedeker
Florian Länger
Patrick Zardo
Ruoyu Zhang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2016
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-016-0443-x

Other articles of this Issue 1/2016

Journal of Cardiothoracic Surgery 1/2016 Go to the issue