Skip to main content
Top
Published in: International Ophthalmology 1/2021

01-01-2021 | Original Paper

Agreement of white-to-white measurements with swept-source OCT, Scheimpflug and color LED devices

Authors: Pedro Tañá-Rivero, Salvador Aguilar-Córcoles, José Luís Rodríguez-Prats, Robert Montés-Micó, Ramón Ruiz-Mesa

Published in: International Ophthalmology | Issue 1/2021

Login to get access

Abstract

Purpose

To assess the interchangeability of different devices for measuring white-to-white (WTW) distance.

Methods

WTW distance was measured in 53 eyes of 53 patients using Anterion swept-source optical coherence topographer (SS-OCT), IOLMaster 700 SS-OCT, Pentacam HR Scheimpflug and Cassini color LED. Statistical analysis was done by means of the Friedman test and the post hoc Tukey test. The Bland–Altman analysis was applied to carry out pairwise comparisons with the average difference, 95% confidence interval of the average difference and limits of agreement 95% (LoA).

Results

WTW values obtained by the Anterion, IOLMaster 700, Pentacam HR and Cassini were: 11.84 ± 0.41 mm, 11.96 ± 0.41 mm, 11.68 ± 0.38 mm and 12.65 ± 0.52 mm, respectively. Statistically significant differences were found in all pairwise comparison (p < 0.001). The lowest mean difference was found between the Anterion and IOLMaster 700 (− 0.11 mm) and the highest between the Pentacam HR and Cassini (− 0.96 mm). The widest LoA ranges were those that compared any device with the Cassini. LoA ranges when the other three devices were compared among them were similar: Anterion versus IOLMaster 700, Anterion versus Pentacam HR and IOLMaster versus Pentacam HR (about 0.2 mm).

Conclusions

Our results show that there were statistically significant differences in WTW measurement among the four devices, but under a clinical point of view, we believe that Anterion and IOLMaster 700 may be considered interchangeable and so Anterion and Pentacam HR, however, IOLMaster 700 and Pentacam HR may not and neither is Cassini with any of the other three devices.
Literature
1.
go back to reference Yoo Y, Whang W, Kim H, Joo C, Yoon G (2019) Preoperative biometric measurements with anterior segment optical coherence tomography and prediction of postoperative intraocular lens position. Medicine (Baltimore) 98:e18026CrossRef Yoo Y, Whang W, Kim H, Joo C, Yoon G (2019) Preoperative biometric measurements with anterior segment optical coherence tomography and prediction of postoperative intraocular lens position. Medicine (Baltimore) 98:e18026CrossRef
2.
go back to reference Ramalho MR, Vaz FT, Pedrosa C et al (2016) 3rd generation formulas and intraocular lens calculation with IOLMaster®. Refractive results in 101 eyes and relationship with axial length. Vision Pan-America Pan-American J Ophthalmol 15:7–9 Ramalho MR, Vaz FT, Pedrosa C et al (2016) 3rd generation formulas and intraocular lens calculation with IOLMaster®. Refractive results in 101 eyes and relationship with axial length. Vision Pan-America Pan-American J Ophthalmol 15:7–9
3.
go back to reference Fernandes P, González-Méijome JM, Madrid-Costa D, Ferrer-Blasco T, Jorge J, Montés-Micó R (2011) Implantable collamer posterior chamber intraocular lenses: a review of potential complications. J Refract Surg 27:765–776CrossRef Fernandes P, González-Méijome JM, Madrid-Costa D, Ferrer-Blasco T, Jorge J, Montés-Micó R (2011) Implantable collamer posterior chamber intraocular lenses: a review of potential complications. J Refract Surg 27:765–776CrossRef
4.
go back to reference Baumeister M, Terzi E, Ekici Y et al (2004) Comparison of manual and automated methods to determine horizontal corneal diameter. J Cataract Refract Surg 30:374–380CrossRef Baumeister M, Terzi E, Ekici Y et al (2004) Comparison of manual and automated methods to determine horizontal corneal diameter. J Cataract Refract Surg 30:374–380CrossRef
5.
go back to reference Domínguez-Vicent A, Pérez-Vives C, Ferrer-Blasco T, García-Lázaro S, Montés-Micó R (2016) Device interchangeability on anterior chamber depth and white-to-white measurements: a thorough literature review. Int J Ophthalmol 9:1057–1065PubMedPubMedCentral Domínguez-Vicent A, Pérez-Vives C, Ferrer-Blasco T, García-Lázaro S, Montés-Micó R (2016) Device interchangeability on anterior chamber depth and white-to-white measurements: a thorough literature review. Int J Ophthalmol 9:1057–1065PubMedPubMedCentral
6.
go back to reference Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Khodaman AR (2013) Comparison of Horizontal corneal diameter measurements using the Orbscan IIz and Pentacam HR systems. Cornea 32:1460–1464CrossRef Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Khodaman AR (2013) Comparison of Horizontal corneal diameter measurements using the Orbscan IIz and Pentacam HR systems. Cornea 32:1460–1464CrossRef
7.
go back to reference Dominguez-Vicent A, Perez-Vives C, Ferrer-Blasco T et al (2015) Interchangeability among five devices that measure anterior eye distances. Clin Exp Optom 98:254–262CrossRef Dominguez-Vicent A, Perez-Vives C, Ferrer-Blasco T et al (2015) Interchangeability among five devices that measure anterior eye distances. Clin Exp Optom 98:254–262CrossRef
8.
go back to reference Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S (2015) Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg 41:2224–2232CrossRef Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S (2015) Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg 41:2224–2232CrossRef
9.
go back to reference Shajari M, Lehmann UC, Kohnen T (2016) Comparison of corneal diameter and anterior chamber depth measurements using 4 different devices. Cornea 35:838–842CrossRef Shajari M, Lehmann UC, Kohnen T (2016) Comparison of corneal diameter and anterior chamber depth measurements using 4 different devices. Cornea 35:838–842CrossRef
10.
go back to reference Jung S, Chin HS, Kim NR, Lee KW, Jung JW (2017) Comparison of repeatability and agreement between swept-source optical biometry and dual-Scheimpflug topography. J Ophthalmol 2017:1516395CrossRef Jung S, Chin HS, Kim NR, Lee KW, Jung JW (2017) Comparison of repeatability and agreement between swept-source optical biometry and dual-Scheimpflug topography. J Ophthalmol 2017:1516395CrossRef
11.
go back to reference Arriola-Villalobos P, Almendral-Gomez J, Garzon N et al (2017) Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye (Lond) 31:437–442CrossRef Arriola-Villalobos P, Almendral-Gomez J, Garzon N et al (2017) Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye (Lond) 31:437–442CrossRef
12.
go back to reference Salouti R, Nowroozzadeh MH, Tajbakhsh Z et al (2017) Agreement of corneal diameter measurements obtained by a swept-source biometer and a Scheimpflug-based topographer. Cornea 36:1373–1376CrossRef Salouti R, Nowroozzadeh MH, Tajbakhsh Z et al (2017) Agreement of corneal diameter measurements obtained by a swept-source biometer and a Scheimpflug-based topographer. Cornea 36:1373–1376CrossRef
13.
go back to reference Savini G, Schiano-Lomoriello D, Hoffer KJ (2018) Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with Placido topography and agreement with 2 Scheimpflug cameras. J Cataract Refract Surg 44:471–478CrossRef Savini G, Schiano-Lomoriello D, Hoffer KJ (2018) Repeatability of automatic measurements by a new anterior segment optical coherence tomographer combined with Placido topography and agreement with 2 Scheimpflug cameras. J Cataract Refract Surg 44:471–478CrossRef
14.
go back to reference Ferrer-Blasco T, Esteve-Taboada JJ, Martínez-Albert N, Alfonso JF, Montés-Micó R (2018) Agreement of white-to-white measurements with the IOLMaster 700, Atlas 9000, and Sirius systems. Expert Rev Med Devices 15:453–459CrossRef Ferrer-Blasco T, Esteve-Taboada JJ, Martínez-Albert N, Alfonso JF, Montés-Micó R (2018) Agreement of white-to-white measurements with the IOLMaster 700, Atlas 9000, and Sirius systems. Expert Rev Med Devices 15:453–459CrossRef
15.
go back to reference Cho YJ, Lim TH, Choi KY, Cho BJ (2018) Comparison of ocular biometry using new swept-source optical coherence tomography-based optical biometer with other devices. Korean J Ophthalmol 32:257–264CrossRef Cho YJ, Lim TH, Choi KY, Cho BJ (2018) Comparison of ocular biometry using new swept-source optical coherence tomography-based optical biometer with other devices. Korean J Ophthalmol 32:257–264CrossRef
16.
go back to reference El Chehab H, Agard E, Dot C (2019) Comparison of two biometers: a swept-source optical coherence tomography and an optical low-coherence reflectometry biometer. Eur J Ophthalmol 29:547–554CrossRef El Chehab H, Agard E, Dot C (2019) Comparison of two biometers: a swept-source optical coherence tomography and an optical low-coherence reflectometry biometer. Eur J Ophthalmol 29:547–554CrossRef
17.
go back to reference Sabatino F, Matarazzo F, Findl O, Maurino V (2019) Comparative analysis of 2 swept-source optical coherence tomography biometers. J Cataract Refract Surg 45:1124–1129CrossRef Sabatino F, Matarazzo F, Findl O, Maurino V (2019) Comparative analysis of 2 swept-source optical coherence tomography biometers. J Cataract Refract Surg 45:1124–1129CrossRef
18.
go back to reference Yang CM, Lim DH, Kim HJ, Chung TY (2019) Comparison of two swept-source optical coherence tomography biometers and a partial coherence interferometer. PLoS ONE 14:e0223114CrossRef Yang CM, Lim DH, Kim HJ, Chung TY (2019) Comparison of two swept-source optical coherence tomography biometers and a partial coherence interferometer. PLoS ONE 14:e0223114CrossRef
19.
go back to reference Lu W, Li Y, Savini G, Song B, Hu Q, Wang Q, Bao F, Huang J (2019) Comparison of anterior segment measurements obtained using a swept-source optical coherence tomography biometer and a Scheimpflug-Placido tomographer. J Cataract Refract Surg 45:298–304CrossRef Lu W, Li Y, Savini G, Song B, Hu Q, Wang Q, Bao F, Huang J (2019) Comparison of anterior segment measurements obtained using a swept-source optical coherence tomography biometer and a Scheimpflug-Placido tomographer. J Cataract Refract Surg 45:298–304CrossRef
20.
go back to reference Chan TCY, Wan KH, Tang FY, Wang YM, Yu M, Cheung C (2020) Repeatability and agreement of a swept-source optical coherence tomography-based biometer IOLMaster 700 versus a Scheimpflug imaging-based biometer AL-Scan in cataract patients. Eye Contact Lens 46:35–45CrossRef Chan TCY, Wan KH, Tang FY, Wang YM, Yu M, Cheung C (2020) Repeatability and agreement of a swept-source optical coherence tomography-based biometer IOLMaster 700 versus a Scheimpflug imaging-based biometer AL-Scan in cataract patients. Eye Contact Lens 46:35–45CrossRef
21.
go back to reference Liao X, Peng Y, Liu B, Tan QQ, Lan CJ (2020) Agreement of ocular biometric measurements in young healthy eyes between IOLMaster 700 and OA-2000. Sci Rep 10:3134CrossRef Liao X, Peng Y, Liu B, Tan QQ, Lan CJ (2020) Agreement of ocular biometric measurements in young healthy eyes between IOLMaster 700 and OA-2000. Sci Rep 10:3134CrossRef
22.
go back to reference McAlinden C, Khadka J, Pesudovs K (2011) Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic Physiol Opt 31:330–338CrossRef McAlinden C, Khadka J, Pesudovs K (2011) Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic Physiol Opt 31:330–338CrossRef
23.
go back to reference Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRef Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRef
24.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef
25.
go back to reference McAlinden C, Khadka J, Pesudovs K (2015) Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg 41:2598–2604CrossRef McAlinden C, Khadka J, Pesudovs K (2015) Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg 41:2598–2604CrossRef
26.
go back to reference Mohamed A, Nankivil D, Pesala V et al (2013) The precision of ophthalmic biometry using calipers. Can J Ophthalmol 48:506–511CrossRef Mohamed A, Nankivil D, Pesala V et al (2013) The precision of ophthalmic biometry using calipers. Can J Ophthalmol 48:506–511CrossRef
Metadata
Title
Agreement of white-to-white measurements with swept-source OCT, Scheimpflug and color LED devices
Authors
Pedro Tañá-Rivero
Salvador Aguilar-Córcoles
José Luís Rodríguez-Prats
Robert Montés-Micó
Ramón Ruiz-Mesa
Publication date
01-01-2021
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 1/2021
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-020-01552-9

Other articles of this Issue 1/2021

International Ophthalmology 1/2021 Go to the issue