Skip to main content
Top
Published in: Molecular Cancer 1/2018

Open Access 01-12-2018 | Letter to the Editor

Aggressiveness of non-EMT breast cancer cells relies on FBXO11 activity

Authors: Sofie Otzen Bagger, Branden Michael Hopkinson, Deo Prakash Pandey, Mads Bak, Andreas Vincent Brydholm, Rene Villadsen, Kristian Helin, Lone Rønnov-Jessen, Ole William Petersen, Jiyoung Kim

Published in: Molecular Cancer | Issue 1/2018

Login to get access

Abstract

Tumorigenesis is increasingly considered to rely on subclones of cells poised to undergo an epithelial to mesenchymal transition (EMT) program. We and others have provided evidence, however, that the tumorigenesis of human breast cancer is not always restricted to typical EMT cells but is also somewhat paradoxically conveyed by subclones of apparently differentiated, non-EMT cells. Here we characterize such non-EMT-like and EMT-like subclones. Through a loss-of-function screen we found that a member of the E3 ubiquitin ligase complexes, FBXO11, specifically fuels tumor formation of a non-EMT-like clone by restraining the p53/p21 pathway. Interestingly, in the related EMT-like clone, FBXO11 operates through the BCL2 pathway with little or no impact on tumorigenesis. These data command caution in attempts to assess tumorigenesis prospectively based on EMT profiling, and they emphasize the importance of next generation subtyping of tumors, that is at the level of clonal composition.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, et al. Upholding a role for EMT in breast cancer metastasis. Nature. 2017;547(7661):E1–3.CrossRefPubMedPubMedCentral Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ, et al. Upholding a role for EMT in breast cancer metastasis. Nature. 2017;547(7661):E1–3.CrossRefPubMedPubMedCentral
2.
go back to reference Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527(7579):472–6.CrossRefPubMedPubMedCentral Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527(7579):472–6.CrossRefPubMedPubMedCentral
3.
go back to reference Kim J, Villadsen R, Sørlie T, Fogh L, Grønlund SZ, Fridriksdottir AJ, et al. Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A. 2012;109(16):6124–9.CrossRefPubMedPubMedCentral Kim J, Villadsen R, Sørlie T, Fogh L, Grønlund SZ, Fridriksdottir AJ, et al. Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A. 2012;109(16):6124–9.CrossRefPubMedPubMedCentral
4.
go back to reference Leth-Larsen R, Terp MG, Christensen AG, Elias D, Kuhlwein T, Jensen ON, et al. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis. Mol Med. 2012;18:1109–21.CrossRefPubMedPubMedCentral Leth-Larsen R, Terp MG, Christensen AG, Elias D, Kuhlwein T, Jensen ON, et al. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis. Mol Med. 2012;18:1109–21.CrossRefPubMedPubMedCentral
5.
go back to reference Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8.CrossRefPubMedPubMedCentral Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478(7370):524–8.CrossRefPubMedPubMedCentral
6.
go back to reference Comsa S, Cimpean AM, Raica M. The story of MCF-7 breast Cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35(6):3147–54.PubMed Comsa S, Cimpean AM, Raica M. The story of MCF-7 breast Cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35(6):3147–54.PubMed
7.
go back to reference Diaz VM, de Herreros AG. F-box proteins: keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol. 2016;36:71–9.CrossRefPubMed Diaz VM, de Herreros AG. F-box proteins: keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol. 2016;36:71–9.CrossRefPubMed
8.
go back to reference Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W. FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem. 2007;282(3):1797–804.CrossRefPubMed Abida WM, Nikolaev A, Zhao W, Zhang W, Gu W. FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem. 2007;282(3):1797–804.CrossRefPubMed
9.
go back to reference Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.CrossRefPubMed Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.CrossRefPubMed
10.
go back to reference Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14(8):777–83.CrossRef Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14(8):777–83.CrossRef
Metadata
Title
Aggressiveness of non-EMT breast cancer cells relies on FBXO11 activity
Authors
Sofie Otzen Bagger
Branden Michael Hopkinson
Deo Prakash Pandey
Mads Bak
Andreas Vincent Brydholm
Rene Villadsen
Kristian Helin
Lone Rønnov-Jessen
Ole William Petersen
Jiyoung Kim
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2018
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0918-6

Other articles of this Issue 1/2018

Molecular Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine