Skip to main content
Top
Published in: Endocrine 3/2013

01-06-2013 | Original Article

Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women

Authors: Hongbing Zhang, Xiangping Chai, Shuang Li, Zhimin Zhang, Lingqing Yuan, Hui Xie, Houde Zhou, Xiyu Wu, Zhifeng Sheng, Eryuan Liao

Published in: Endocrine | Issue 3/2013

Login to get access

Abstract

The purpose of this work is to investigate the age-related changes in body composition and their relationship with bone mineral density decreasing rates (BDR) in central south Chinese postmenopausal women. BDR is the percentage of bone mineral density (BMD) decreasing value relative to the peak bone mass. A cross-sectional study was conducted on 779 healthy postmenopausal women, aged 50–77. Lumbar spine, total hip, and femoral neck BMD and body composition were measured by dual-energy X-ray absorptiometry. In women under 65, lean mass levels showed a stable downward trend, and were significantly higher than those of the 65–70 and >70 age groups; however, the fat mass levels showed no significant difference between the age groups. After controlling for age, age at menopause, and height, both fat mass and lean mass positively correlated with BDR at the lumbar1–4 spine, the femoral neck and the total hip. When BDR at the lumbar1–4 spine was used as the dependent variable, a higher R 2 change and partial R 2 were seen in fat mass than the age, age at menopause or lean mass, indicating that fat mass was the most significant determinant of BDR at this site. When BDR at the femoral neck or total hip was used as the dependent variable, respectively, lean mass was a more significant determinant than that of fat mass. We found that with advancing age, lean mass begins to decrease in women aged over 65 years, but fat mass levels show no significant difference between the age groups. Both fat mass and lean mass positively correlate with BDR, with site-specific differences. Fat mass is the most significant determinant of BDR at the lumbar spine, whereas lean mass is the most significant determinant of BDR at the femoral neck and total hip.
Literature
1.
go back to reference G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012)PubMedCrossRef G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012)PubMedCrossRef
2.
go back to reference R.K. McCormick, Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern. Med. Rev. 12, 113–145 (2007)PubMed R.K. McCormick, Osteoporosis: integrating biomarkers and other diagnostic correlates into the management of bone fragility. Altern. Med. Rev. 12, 113–145 (2007)PubMed
3.
go back to reference D.W. Bates, D.M. Black, S.R. Cummings, Clinical use of bone densitometry: clinical applications. JAMA 288, 1898–1900 (2002)PubMedCrossRef D.W. Bates, D.M. Black, S.R. Cummings, Clinical use of bone densitometry: clinical applications. JAMA 288, 1898–1900 (2002)PubMedCrossRef
4.
go back to reference NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis, and Therapy, March 7–29, 2000: highlights of the conference. South Med. J. 94, 569–573 (2001) NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis, and Therapy, March 7–29, 2000: highlights of the conference. South Med. J. 94, 569–573 (2001)
5.
go back to reference D.T. Felson, Y. Zhang, M.T. Hannan, J.J. Anderson, Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J. Bone Min. Res. 8, 567–573 (1993)CrossRef D.T. Felson, Y. Zhang, M.T. Hannan, J.J. Anderson, Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J. Bone Min. Res. 8, 567–573 (1993)CrossRef
6.
go back to reference H.S. Glauber, W.M. Vollmer, M.C. Nevitt, K.E. Ensrud, E.S. Orwoll, Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J. Clin. Endocrinol. Metab. 80, 1118–1123 (1995)PubMedCrossRef H.S. Glauber, W.M. Vollmer, M.C. Nevitt, K.E. Ensrud, E.S. Orwoll, Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J. Clin. Endocrinol. Metab. 80, 1118–1123 (1995)PubMedCrossRef
7.
go back to reference T. Douchi, S. Yamamoto, T. Oki, K. Maruta, R. Kuwahata, H. Yamasaki, Y. Nagata, Difference in the effect of adiposity or bone density between pre- and postmenopausal women. Maturitas 34, 261–266 (2000)PubMedCrossRef T. Douchi, S. Yamamoto, T. Oki, K. Maruta, R. Kuwahata, H. Yamasaki, Y. Nagata, Difference in the effect of adiposity or bone density between pre- and postmenopausal women. Maturitas 34, 261–266 (2000)PubMedCrossRef
8.
go back to reference L.J. Melton III, S.E. Gabriel, C.S. Crowson, A.N. Tosteson, O. Johnell, J.A. Kanis, Cost-equivalence of different osteoporotic fractures. Osteoporos. Int. 14, 383–388 (2003)PubMedCrossRef L.J. Melton III, S.E. Gabriel, C.S. Crowson, A.N. Tosteson, O. Johnell, J.A. Kanis, Cost-equivalence of different osteoporotic fractures. Osteoporos. Int. 14, 383–388 (2003)PubMedCrossRef
10.
go back to reference L.J. Zhao, H. Jiang, C.J. Papasian, D. Maulik, B. Drees, J. Hamilton, H.W. Deng, Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 23, 17–29 (2008)PubMedCrossRef L.J. Zhao, H. Jiang, C.J. Papasian, D. Maulik, B. Drees, J. Hamilton, H.W. Deng, Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J. Bone Miner. Res. 23, 17–29 (2008)PubMedCrossRef
11.
go back to reference J.A. Kanis, L.J. Melton 3rd, C. Christiansen, C.C. Johnston, N. Khaltaev, The diagnosis of osteoporosis. J. Bone Miner. Res. 9, 1137–1141 (1994)PubMedCrossRef J.A. Kanis, L.J. Melton 3rd, C. Christiansen, C.C. Johnston, N. Khaltaev, The diagnosis of osteoporosis. J. Bone Miner. Res. 9, 1137–1141 (1994)PubMedCrossRef
12.
13.
go back to reference Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 94, 646–650 (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 94, 646–650 (1993)
14.
go back to reference M.E. Arlot, E. Sornay-Rendu, P. Garnero, B. Vey-Marty, P.D. Delmas, Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J. Bone Miner. Res. 12, 683–690 (1997)PubMedCrossRef M.E. Arlot, E. Sornay-Rendu, P. Garnero, B. Vey-Marty, P.D. Delmas, Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J. Bone Miner. Res. 12, 683–690 (1997)PubMedCrossRef
15.
go back to reference S. Gnudi, E. Sitta, N. Fiumi, Relationship between body composition and bone mineral density in women with and without osteoporosis: relative contribution of lean and fat mass. J. Bone Miner. Metab. 25, 326–332 (2007)PubMedCrossRef S. Gnudi, E. Sitta, N. Fiumi, Relationship between body composition and bone mineral density in women with and without osteoporosis: relative contribution of lean and fat mass. J. Bone Miner. Metab. 25, 326–332 (2007)PubMedCrossRef
16.
go back to reference S. Li, R. Wagner, K. Holm, J. Lehotsky, M.J. Zinaman, Relationship between soft tissue body composition and bone mass in perimenopausal women. Maturitas 47, 99–105 (2004)PubMedCrossRef S. Li, R. Wagner, K. Holm, J. Lehotsky, M.J. Zinaman, Relationship between soft tissue body composition and bone mass in perimenopausal women. Maturitas 47, 99–105 (2004)PubMedCrossRef
17.
go back to reference X.G. Cheng, D.Z. Yang, Q. Zhou, T.J. Zhuo, H.C. Zhang, J. Xiang, H.F. Wang, P.Z. Ou, J.L. Liu, L. Xu, G.Y. Huang, Q.R. Huang, H.S. Barden, L.S. Weynand, K.G. Faulkner, X.W. Meng, Age-related bone mineral density, bone loss rate, prevalence of osteoporosis, and reference database of women at multiple centers in China. J. Clin. Densitom. 10, 276–284 (2007)PubMedCrossRef X.G. Cheng, D.Z. Yang, Q. Zhou, T.J. Zhuo, H.C. Zhang, J. Xiang, H.F. Wang, P.Z. Ou, J.L. Liu, L. Xu, G.Y. Huang, Q.R. Huang, H.S. Barden, L.S. Weynand, K.G. Faulkner, X.W. Meng, Age-related bone mineral density, bone loss rate, prevalence of osteoporosis, and reference database of women at multiple centers in China. J. Clin. Densitom. 10, 276–284 (2007)PubMedCrossRef
18.
go back to reference L.T. Ho-Pham, N.D. Nguyen, T.Q. Lai, T.V. Nguyen, Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women. BMC Musculoskelet. Disord. 11, 59 (2010)PubMedCrossRef L.T. Ho-Pham, N.D. Nguyen, T.Q. Lai, T.V. Nguyen, Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women. BMC Musculoskelet. Disord. 11, 59 (2010)PubMedCrossRef
19.
go back to reference G. Martini, R. Valenti, S. Giovani, R. Nuti, Age-related changed in body composition of healthy and osteoporotic women. Maturitas 27, 25–33 (1997)PubMedCrossRef G. Martini, R. Valenti, S. Giovani, R. Nuti, Age-related changed in body composition of healthy and osteoporotic women. Maturitas 27, 25–33 (1997)PubMedCrossRef
20.
go back to reference L.H. Cui, M.H. Shin, S.S. Kweon, K.S. Park, Y.H. Lee, E.K. Chung, H.S. Nam, J.S. Choi, Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J. Bone Miner. Metab. 25, 165–171 (2007)PubMedCrossRef L.H. Cui, M.H. Shin, S.S. Kweon, K.S. Park, Y.H. Lee, E.K. Chung, H.S. Nam, J.S. Choi, Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J. Bone Miner. Metab. 25, 165–171 (2007)PubMedCrossRef
21.
go back to reference S. Lim, H. Joung, C.S. Shin, H.K. Lee, K.S. Kim, E.K. Shin, H.Y. Kim, M.K. Lim, S.I. Cho, Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35, 792–798 (2004)PubMedCrossRef S. Lim, H. Joung, C.S. Shin, H.K. Lee, K.S. Kim, E.K. Shin, H.Y. Kim, M.K. Lim, S.I. Cho, Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35, 792–798 (2004)PubMedCrossRef
22.
go back to reference M.K. Karlsson, K.J. Obrant, B.E. Nilsson, O. Johnell, Changes in bone mineral, lean body mass and fat content as measured by dual energy X-ray absorptiometry: a longitudinal study. Calcif. Tissue Int. 66, 97–99 (2000)PubMedCrossRef M.K. Karlsson, K.J. Obrant, B.E. Nilsson, O. Johnell, Changes in bone mineral, lean body mass and fat content as measured by dual energy X-ray absorptiometry: a longitudinal study. Calcif. Tissue Int. 66, 97–99 (2000)PubMedCrossRef
23.
go back to reference S.H. Cohn, A. Vaswani, I. Zanzi, J.F. Aloia, M.S. Roginsky, K.J. Ellis, Changes in body chemical composition with age measured by total-body neutron activation. Metabolism 25, 85–95 (1976)PubMedCrossRef S.H. Cohn, A. Vaswani, I. Zanzi, J.F. Aloia, M.S. Roginsky, K.J. Ellis, Changes in body chemical composition with age measured by total-body neutron activation. Metabolism 25, 85–95 (1976)PubMedCrossRef
24.
go back to reference S. Gillette-Guyonnet, F. Nourhashemi, S. Lauque, H. Grandjean, B. Vellas, Body composition and osteoporosis in elderly women. Gerontology 46, 189–193 (2000)PubMedCrossRef S. Gillette-Guyonnet, F. Nourhashemi, S. Lauque, H. Grandjean, B. Vellas, Body composition and osteoporosis in elderly women. Gerontology 46, 189–193 (2000)PubMedCrossRef
25.
go back to reference D. Nakaoka, T. Sugimoto, H. Kaji, M. Kanzawa, S. Yano, M. Yamauchi, T. Sugishita, K. Chihara, Determinants of bone mineral density and spinal fracture risk in postmenopausal Japanese women. Osteoporos. Int. 12, 548–554 (2001)PubMedCrossRef D. Nakaoka, T. Sugimoto, H. Kaji, M. Kanzawa, S. Yano, M. Yamauchi, T. Sugishita, K. Chihara, Determinants of bone mineral density and spinal fracture risk in postmenopausal Japanese women. Osteoporos. Int. 12, 548–554 (2001)PubMedCrossRef
26.
go back to reference R. El Hage, C. Jacob, E. Moussa, R. Baddoura, Relative importance of lean mass and fat mass on bone mineral density in a group of Lebanese postmenopausal women. J. Clin. Densitom. 14, 326–331 (2011)PubMedCrossRef R. El Hage, C. Jacob, E. Moussa, R. Baddoura, Relative importance of lean mass and fat mass on bone mineral density in a group of Lebanese postmenopausal women. J. Clin. Densitom. 14, 326–331 (2011)PubMedCrossRef
27.
go back to reference M.A. Petit, T.J. Beck, J. Shults, B.S. Zemel, B.J. Foster, M.B. Leonard, Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36, 568–576 (2005)PubMedCrossRef M.A. Petit, T.J. Beck, J. Shults, B.S. Zemel, B.J. Foster, M.B. Leonard, Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36, 568–576 (2005)PubMedCrossRef
28.
go back to reference Z. Zhang, X. Shen, H. Zhang, S. Li, H. Zhou, X. Wu, Z. Sheng, E. Liao, The relationship between body composition and fracture risk using the FRAX model in central south Chinese postmenopausal women. Clin. Endocrinol. (Oxf.) 77(4), 524–530 (2012)CrossRef Z. Zhang, X. Shen, H. Zhang, S. Li, H. Zhou, X. Wu, Z. Sheng, E. Liao, The relationship between body composition and fracture risk using the FRAX model in central south Chinese postmenopausal women. Clin. Endocrinol. (Oxf.) 77(4), 524–530 (2012)CrossRef
29.
go back to reference J.M. Grodin, P.K. Siiteri, P.C. MacDonald, Source of estrogen production in postmenopausal women. J. Clin. Endocrinol. Metab. 36, 207–214 (1973)PubMedCrossRef J.M. Grodin, P.K. Siiteri, P.C. MacDonald, Source of estrogen production in postmenopausal women. J. Clin. Endocrinol. Metab. 36, 207–214 (1973)PubMedCrossRef
30.
go back to reference P.K. Siiteri, Adipose tissue as a source of hormones. Am. J. Clin. Nutr. 45, 277–282 (1987)PubMed P.K. Siiteri, Adipose tissue as a source of hormones. Am. J. Clin. Nutr. 45, 277–282 (1987)PubMed
31.
go back to reference I.R. Reid, R. Ames, M.C. Evans, S. Sharpe, G. Gamble, J.T. France, T.M. Lim, T.F. Cundy, Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J. Clin. Endocrinol. Metab. 75, 45–51 (1992)PubMedCrossRef I.R. Reid, R. Ames, M.C. Evans, S. Sharpe, G. Gamble, J.T. France, T.M. Lim, T.F. Cundy, Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J. Clin. Endocrinol. Metab. 75, 45–51 (1992)PubMedCrossRef
32.
go back to reference T. Kameda, H. Mano, T. Yuasa, Y. Mori, K. Miyazawa, M. Shiokawa, Y. Nakamaru, E. Hiroi, K. Hiura, A. Kameda, N.N. Yang, Y. Hakeda, M. Kumegawa, Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J. Exp. Med. 186, 489–495 (1997)PubMedCrossRef T. Kameda, H. Mano, T. Yuasa, Y. Mori, K. Miyazawa, M. Shiokawa, Y. Nakamaru, E. Hiroi, K. Hiura, A. Kameda, N.N. Yang, Y. Hakeda, M. Kumegawa, Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J. Exp. Med. 186, 489–495 (1997)PubMedCrossRef
33.
34.
go back to reference M.D. Kontogianni, U.G. Dafni, J.G. Routsias, F.N. Skopouli, Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J. Bone Miner. Res. 19, 546–551 (2004)PubMedCrossRef M.D. Kontogianni, U.G. Dafni, J.G. Routsias, F.N. Skopouli, Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J. Bone Miner. Res. 19, 546–551 (2004)PubMedCrossRef
35.
go back to reference K.M. Thrailkill, C.K. Lumpkin Jr, R.C. Bunn, S.F. Kemp, J.L. Fowlkes, Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735–E745 (2005)PubMedCrossRef K.M. Thrailkill, C.K. Lumpkin Jr, R.C. Bunn, S.F. Kemp, J.L. Fowlkes, Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735–E745 (2005)PubMedCrossRef
36.
go back to reference J. Cornish, I.R. Reid, Effects of amylin and adrenomedullin on the skeleton. J. Musculoskelet. Neuronal. Interact. 2, 15–24 (2001)PubMed J. Cornish, I.R. Reid, Effects of amylin and adrenomedullin on the skeleton. J. Musculoskelet. Neuronal. Interact. 2, 15–24 (2001)PubMed
37.
go back to reference K. Ağbaht, A. Gürlek, J. Karakaya, M. Bayraktar, Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35, 371–379 (2009)PubMedCrossRef K. Ağbaht, A. Gürlek, J. Karakaya, M. Bayraktar, Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35, 371–379 (2009)PubMedCrossRef
38.
go back to reference F. Elefteriou, S. Takeda, K. Ebihara, J. Magre, N. Patano, C.A. Kim, Y. Ogawa, X. Liu, S.M. Ware, W.J. Craigen, J.J. Robert, C. Vinson, K. Nakao, J. Capeau, G. Karsenty, Serum leptin level is a regulator of bone loss. Proc. Natl. Acad. Sci. USA 9, 3258–3263 (2004)CrossRef F. Elefteriou, S. Takeda, K. Ebihara, J. Magre, N. Patano, C.A. Kim, Y. Ogawa, X. Liu, S.M. Ware, W.J. Craigen, J.J. Robert, C. Vinson, K. Nakao, J. Capeau, G. Karsenty, Serum leptin level is a regulator of bone loss. Proc. Natl. Acad. Sci. USA 9, 3258–3263 (2004)CrossRef
39.
go back to reference J.A. Pasco, M.J. Henry, M.A. Kotowicz, G.R. Collier, M.J. Ball, A.M. Ugoni, G.C. Nicholson, Serum leptin levels are associated with bone mass in nonobese women. J. Clin. Endocrinol. Metab. 86, 1884–1887 (2001)PubMedCrossRef J.A. Pasco, M.J. Henry, M.A. Kotowicz, G.R. Collier, M.J. Ball, A.M. Ugoni, G.C. Nicholson, Serum leptin levels are associated with bone mass in nonobese women. J. Clin. Endocrinol. Metab. 86, 1884–1887 (2001)PubMedCrossRef
40.
go back to reference T. Thomas, B. Burguera, L.J. Melton 3rd, E.J. Atkinson, W.M. O’Fallon, B.L. Riggs, S. Khosla, Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29, 114–120 (2001)PubMedCrossRef T. Thomas, B. Burguera, L.J. Melton 3rd, E.J. Atkinson, W.M. O’Fallon, B.L. Riggs, S. Khosla, Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29, 114–120 (2001)PubMedCrossRef
41.
go back to reference L.M. Ritland, D.L. Alekel, O.A. Matvienko, K.B. Hanson, J.W. Stewart, L.N. Hanson, M.B. Reddy, M.D. Van Loan, U. Genschel, Centrally located body fat is related to appetitive hormones in healthy postmenopausal women. Eur. J. Endocrinol. 158, 889–897 (2008)PubMedCrossRef L.M. Ritland, D.L. Alekel, O.A. Matvienko, K.B. Hanson, J.W. Stewart, L.N. Hanson, M.B. Reddy, M.D. Van Loan, U. Genschel, Centrally located body fat is related to appetitive hormones in healthy postmenopausal women. Eur. J. Endocrinol. 158, 889–897 (2008)PubMedCrossRef
42.
go back to reference K. Oshima, A. Nampei, M. Matsuda, M. Iwaki, A. Fukuhara, J. Hashimoto, H. Yoshikawa, I. Shimomura, Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331, 520–526 (2005)PubMedCrossRef K. Oshima, A. Nampei, M. Matsuda, M. Iwaki, A. Fukuhara, J. Hashimoto, H. Yoshikawa, I. Shimomura, Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331, 520–526 (2005)PubMedCrossRef
43.
44.
go back to reference J.A. Cauley, J. Robbins, Z. Chen, S.R. Cummings, R.D. Jackson, A.Z. LaCroix, M. LeBoff, C.E. Lewis, J. McGowan, J. Neuner, M. Pettinger, M.L. Stefanick, J. Wactawski-Wende, N.B. Watts, Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290, 1729–1738 (2003)PubMedCrossRef J.A. Cauley, J. Robbins, Z. Chen, S.R. Cummings, R.D. Jackson, A.Z. LaCroix, M. LeBoff, C.E. Lewis, J. McGowan, J. Neuner, M. Pettinger, M.L. Stefanick, J. Wactawski-Wende, N.B. Watts, Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290, 1729–1738 (2003)PubMedCrossRef
45.
go back to reference R. Lindsay, J.C. Gallagher, M. Kleerekoper, J.H. Pickar, Bone response to treatment with lower doses of conjugated estrogens with and without medroxyprogesterone acetate in early postmenopausal women. Osteoporos. Int. 16, 372–379 (2005)PubMedCrossRef R. Lindsay, J.C. Gallagher, M. Kleerekoper, J.H. Pickar, Bone response to treatment with lower doses of conjugated estrogens with and without medroxyprogesterone acetate in early postmenopausal women. Osteoporos. Int. 16, 372–379 (2005)PubMedCrossRef
46.
go back to reference G. Mazziotti, M. Gola, A. Bianchi, T. Porcelli, A. Giampietro, V. Cimino, M. Doga, C. Gazzaruso, L. De Marinis, A. Giustina, Influence of diabetes mellitus on vertebral fractures in men with acromegaly. Endocrine 40(1), 102–108 (2011)PubMedCrossRef G. Mazziotti, M. Gola, A. Bianchi, T. Porcelli, A. Giampietro, V. Cimino, M. Doga, C. Gazzaruso, L. De Marinis, A. Giustina, Influence of diabetes mellitus on vertebral fractures in men with acromegaly. Endocrine 40(1), 102–108 (2011)PubMedCrossRef
47.
go back to reference C. Torti, G. Mazziotti, P.A. Soldini, E. Focà, R. Maroldi, D. Gotti, G. Carosi, A. Giustina, High prevalence of radiological vertebral fractures in HIV-infected males. Endocrine 41(3), 512–517 (2012)PubMedCrossRef C. Torti, G. Mazziotti, P.A. Soldini, E. Focà, R. Maroldi, D. Gotti, G. Carosi, A. Giustina, High prevalence of radiological vertebral fractures in HIV-infected males. Endocrine 41(3), 512–517 (2012)PubMedCrossRef
Metadata
Title
Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women
Authors
Hongbing Zhang
Xiangping Chai
Shuang Li
Zhimin Zhang
Lingqing Yuan
Hui Xie
Houde Zhou
Xiyu Wu
Zhifeng Sheng
Eryuan Liao
Publication date
01-06-2013
Publisher
Springer US
Published in
Endocrine / Issue 3/2013
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-012-9833-6

Other articles of this Issue 3/2013

Endocrine 3/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine