Skip to main content
Top
Published in: BMC Psychiatry 1/2024

Open Access 01-12-2024 | Mood Disorders | Research

Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study

Authors: Zhaosong Chu, Lijin Yuan, Kun Lian, Mengxin He, Yi Lu, Yuqi Cheng, Xiufeng Xu, Zonglin Shen

Published in: BMC Psychiatry | Issue 1/2024

Login to get access

Abstract

Background

Melancholic depression (MD) is one of the most prevalent and severe subtypes of major depressive disorder (MDD). Previous studies have revealed inconsistent results regarding alterations in grey matter volume (GMV) of the hippocampus and amygdala of MD patients, possibly due to overlooking the complexity of their internal structure. The hippocampus and amygdala consist of multiple and functionally distinct subregions, and these subregions may play different roles in MD. This study aims to investigate the volumetric alterations of each subregion of the hippocampus and amygdala in patients with MD and non-melancholic depression (NMD).

Methods

A total of 146 drug-naïve, first-episode MDD patients (72 with MD and 74 with NMD) and 81 gender-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent magnetic resonance imaging (MRI) scans. The subregional segmentation of hippocampus and amygdala was performed using the FreeSurfer 6.0 software. The multivariate analysis of covariance (MANCOVA) was used to detect GMV differences of the hippocampal and amygdala subregions between three groups. Partial correlation analysis was conducted to explore the relationship between hippocampus or amygdala subfields and clinical characteristics in the MD group. Age, gender, years of education and intracranial volume (ICV) were included as covariates in both MANCOVA and partial correlation analyses.

Results

Patients with MD exhibited a significantly lower GMV of the right hippocampal tail compared to HCs, which was uncorrelated with clinical characteristics of MD. No significant differences were observed among the three groups in overall and subregional GMV of amygdala.

Conclusions

Our findings suggest that specific hippocampal subregions in MD patients are more susceptible to volumetric alterations than the entire hippocampus. The reduced right hippocampal tail may underlie the unique neuropathology of MD. Future longitudinal studies are required to better investigate the associations between reduced right hippocampal tail and the onset and progression of MD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, Yu Y, Kou C, Xu X, Lu J, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6(3):211–24.CrossRefPubMed Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, Yu Y, Kou C, Xu X, Lu J, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6(3):211–24.CrossRefPubMed
2.
go back to reference Day CV, Williams LM. Finding a biosignature for melancholic depression. Expert Rev Neurother. 2012;12(7):835–47.CrossRefPubMed Day CV, Williams LM. Finding a biosignature for melancholic depression. Expert Rev Neurother. 2012;12(7):835–47.CrossRefPubMed
3.
go back to reference Dold M, Bartova L, Fugger G, Kautzky A, Mitschek MMM, Fabbri C, Montgomery S, Zohar J, Souery D, Mendlewicz J, et al. Melancholic features in major depression - a European multicenter study. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110285.CrossRefPubMed Dold M, Bartova L, Fugger G, Kautzky A, Mitschek MMM, Fabbri C, Montgomery S, Zohar J, Souery D, Mendlewicz J, et al. Melancholic features in major depression - a European multicenter study. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110285.CrossRefPubMed
4.
go back to reference Xiang YT, Wang G, Hu C, Guo T, Ungvari GS, Kilbourne AM, Lai KY, Si TM, Zheng QW, Chen DF, et al. Demographic and clinical features and prescribing patterns of psychotropic medications in patients with the melancholic subtype of major depressive disorder in China. PLoS ONE. 2012;7(6):e39840.ADSPubMedCentralCrossRefPubMed Xiang YT, Wang G, Hu C, Guo T, Ungvari GS, Kilbourne AM, Lai KY, Si TM, Zheng QW, Chen DF, et al. Demographic and clinical features and prescribing patterns of psychotropic medications in patients with the melancholic subtype of major depressive disorder in China. PLoS ONE. 2012;7(6):e39840.ADSPubMedCentralCrossRefPubMed
5.
go back to reference Sun N, Li Y, Cai Y, Chen J, Shen Y, Sun J, Zhang Z, Zhang J, Wang L, Guo L, et al. A comparison of melancholic and nonmelancholic recurrent major depression in Han Chinese women. Depress Anxiety. 2012;29(1):4–9.CrossRefPubMed Sun N, Li Y, Cai Y, Chen J, Shen Y, Sun J, Zhang Z, Zhang J, Wang L, Guo L, et al. A comparison of melancholic and nonmelancholic recurrent major depression in Han Chinese women. Depress Anxiety. 2012;29(1):4–9.CrossRefPubMed
6.
go back to reference Zaninotto L, Solmi M, Veronese N, Guglielmo R, Ioime L, Camardese G, Serretti A. A meta-analysis of cognitive performance in melancholic versus non-melancholic unipolar depression. J Affect Disord. 2016;201:15–24.CrossRefPubMed Zaninotto L, Solmi M, Veronese N, Guglielmo R, Ioime L, Camardese G, Serretti A. A meta-analysis of cognitive performance in melancholic versus non-melancholic unipolar depression. J Affect Disord. 2016;201:15–24.CrossRefPubMed
7.
go back to reference Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 2013;18(6):692–9.CrossRefPubMed Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 2013;18(6):692–9.CrossRefPubMed
8.
go back to reference Primo de Carvalho Alves L, Sica da Rocha N. Lower levels of brain-derived neurotrophic factor are associated with melancholic psychomotor retardation among depressed inpatients. Bipolar Disord. 2018;20(8):746–52.CrossRefPubMed Primo de Carvalho Alves L, Sica da Rocha N. Lower levels of brain-derived neurotrophic factor are associated with melancholic psychomotor retardation among depressed inpatients. Bipolar Disord. 2018;20(8):746–52.CrossRefPubMed
9.
go back to reference Foti D, Carlson JM, Sauder CL, Proudfit GH. Reward dysfunction in major depression: multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage. 2014;101:50–8.CrossRefPubMed Foti D, Carlson JM, Sauder CL, Proudfit GH. Reward dysfunction in major depression: multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage. 2014;101:50–8.CrossRefPubMed
10.
go back to reference Bracht T, Horn H, Strik W, Federspiel A, Schnell S, Höfle O, Stegmayer K, Wiest R, Dierks T, Müller TJ, et al. White matter microstructure alterations of the medial forebrain bundle in melancholic depression. J Affect Disord. 2014;155:186–93.CrossRefPubMed Bracht T, Horn H, Strik W, Federspiel A, Schnell S, Höfle O, Stegmayer K, Wiest R, Dierks T, Müller TJ, et al. White matter microstructure alterations of the medial forebrain bundle in melancholic depression. J Affect Disord. 2014;155:186–93.CrossRefPubMed
11.
go back to reference Dai L, Zhou H, Xu X, Zuo Z. Brain structural and functional changes in patients with major depressive disorder: a literature review. PeerJ. 2019;7:e8170.PubMedCentralCrossRefPubMed Dai L, Zhou H, Xu X, Zuo Z. Brain structural and functional changes in patients with major depressive disorder: a literature review. PeerJ. 2019;7:e8170.PubMedCentralCrossRefPubMed
12.
go back to reference Kirkby LA, Luongo FJ, Lee MB, Nahum M, Van Vleet TM, Rao VR, Dawes HE, Chang EF, Sohal VS. An amygdala-Hippocampus subnetwork that encodes variation in Human Mood. Cell. 2018;175(6):1688–1700e1614.CrossRefPubMed Kirkby LA, Luongo FJ, Lee MB, Nahum M, Van Vleet TM, Rao VR, Dawes HE, Chang EF, Sohal VS. An amygdala-Hippocampus subnetwork that encodes variation in Human Mood. Cell. 2018;175(6):1688–1700e1614.CrossRefPubMed
13.
go back to reference Miller J, Watrous AJ, Tsitsiklis M, Lee SA, Sheth SA, Schevon CA, Smith EH, Sperling MR, Sharan A, Asadi-Pooya AA, et al. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat Commun. 2018;9(1):2423.ADSPubMedCentralCrossRefPubMed Miller J, Watrous AJ, Tsitsiklis M, Lee SA, Sheth SA, Schevon CA, Smith EH, Sperling MR, Sharan A, Asadi-Pooya AA, et al. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat Commun. 2018;9(1):2423.ADSPubMedCentralCrossRefPubMed
14.
go back to reference Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83(3):803–34.CrossRefPubMed Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83(3):803–34.CrossRefPubMed
15.
go back to reference Roesler R, Parent MB, LaLumiere RT, McIntyre CK. Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiol Learn Mem. 2021;184:107490.PubMedCentralCrossRefPubMed Roesler R, Parent MB, LaLumiere RT, McIntyre CK. Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiol Learn Mem. 2021;184:107490.PubMedCentralCrossRefPubMed
16.
go back to reference Bromis K, Calem M, Reinders A, Williams SCR, Kempton MJ. Meta-analysis of 89 structural MRI studies in posttraumatic stress disorder and comparison with Major Depressive Disorder. Am J Psychiatry. 2018;175(10):989–98.PubMedCentralCrossRefPubMed Bromis K, Calem M, Reinders A, Williams SCR, Kempton MJ. Meta-analysis of 89 structural MRI studies in posttraumatic stress disorder and comparison with Major Depressive Disorder. Am J Psychiatry. 2018;175(10):989–98.PubMedCentralCrossRefPubMed
17.
go back to reference Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol Psychiatry. 2008;13(11):993–1000.PubMedCentralCrossRefPubMed Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol Psychiatry. 2008;13(11):993–1000.PubMedCentralCrossRefPubMed
18.
go back to reference Santos MAO, Bezerra LS, Carvalho A, Brainer-Lima AM. Global hippocampal atrophy in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Trends Psychiatry Psychother. 2018;40(4):369–78.CrossRefPubMed Santos MAO, Bezerra LS, Carvalho A, Brainer-Lima AM. Global hippocampal atrophy in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Trends Psychiatry Psychother. 2018;40(4):369–78.CrossRefPubMed
19.
go back to reference Yang X, Su Y, Yang F, Song Y, Yan J, Luo Y, Zeng J. Neurofunctional mapping of reward anticipation and outcome for major depressive disorder: a voxel-based meta-analysis. Psychol Med. 2022:1–14. Yang X, Su Y, Yang F, Song Y, Yan J, Luo Y, Zeng J. Neurofunctional mapping of reward anticipation and outcome for major depressive disorder: a voxel-based meta-analysis. Psychol Med. 2022:1–14.
20.
go back to reference Zhang H, Li L, Wu M, Chen Z, Hu X, Chen Y, Zhu H, Jia Z, Gong Q. Brain gray matter alterations in first episodes of depression: a meta-analysis of whole-brain studies. Neurosci Biobehav Rev. 2016;60:43–50.CrossRefPubMed Zhang H, Li L, Wu M, Chen Z, Hu X, Chen Y, Zhu H, Jia Z, Gong Q. Brain gray matter alterations in first episodes of depression: a meta-analysis of whole-brain studies. Neurosci Biobehav Rev. 2016;60:43–50.CrossRefPubMed
21.
go back to reference Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110289.CrossRefPubMed Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110289.CrossRefPubMed
22.
go back to reference Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25.CrossRefPubMed Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25.CrossRefPubMed
23.
24.
go back to reference Soriano-Mas C, Hernández-Ribas R, Pujol J, Urretavizcaya M, Deus J, Harrison BJ, Ortiz H, López-Solà M, Menchón JM, Cardoner N. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biol Psychiatry. 2011;69(4):318–25.CrossRefPubMed Soriano-Mas C, Hernández-Ribas R, Pujol J, Urretavizcaya M, Deus J, Harrison BJ, Ortiz H, López-Solà M, Menchón JM, Cardoner N. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biol Psychiatry. 2011;69(4):318–25.CrossRefPubMed
25.
go back to reference Vassilopoulou K, Papathanasiou M, Michopoulos I, Boufidou F, Oulis P, Kelekis N, Rizos E, Nikolaou C, Pantelis C, Velakoulis D, et al. A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: melancholic versus psychotic depression. J Affect Disord. 2013;146(2):197–204.CrossRefPubMed Vassilopoulou K, Papathanasiou M, Michopoulos I, Boufidou F, Oulis P, Kelekis N, Rizos E, Nikolaou C, Pantelis C, Velakoulis D, et al. A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: melancholic versus psychotic depression. J Affect Disord. 2013;146(2):197–204.CrossRefPubMed
26.
go back to reference Hickie I, Naismith S, Ward PB, Turner K, Scott E, Mitchell P, Wilhelm K, Parker G. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. Br J Psychiatry. 2005;186:197–202.CrossRefPubMed Hickie I, Naismith S, Ward PB, Turner K, Scott E, Mitchell P, Wilhelm K, Parker G. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. Br J Psychiatry. 2005;186:197–202.CrossRefPubMed
27.
go back to reference MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry. 2008;64(10):880–3.CrossRefPubMed MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry. 2008;64(10):880–3.CrossRefPubMed
28.
go back to reference deCampo DM, Fudge JL. Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev. 2012;36(1):520–35.CrossRefPubMed deCampo DM, Fudge JL. Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev. 2012;36(1):520–35.CrossRefPubMed
29.
go back to reference Roddy D, Kelly JR, Farrell C, Doolin K, Roman E, Nasa A, Frodl T, Harkin A, O’Mara S, O’Hanlon E, et al. Amygdala substructure volumes in major depressive disorder. Neuroimage Clin. 2021;31:102781.PubMedCentralCrossRefPubMed Roddy D, Kelly JR, Farrell C, Doolin K, Roman E, Nasa A, Frodl T, Harkin A, O’Mara S, O’Hanlon E, et al. Amygdala substructure volumes in major depressive disorder. Neuroimage Clin. 2021;31:102781.PubMedCentralCrossRefPubMed
30.
go back to reference Malykhin NV, Bouchard TP, Ogilvie CJ, Coupland NJ, Seres P, Camicioli R. Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Res. 2007;155(2):155–65.CrossRefPubMed Malykhin NV, Bouchard TP, Ogilvie CJ, Coupland NJ, Seres P, Camicioli R. Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Res. 2007;155(2):155–65.CrossRefPubMed
31.
go back to reference Dai Z, Chen F, Zhang B, Yao L, Dong C, Xu Y, Zhu B, Zhang X, Li M, Wang H. Application of multi-voxel proton magnetic resonance spectroscopy in different hippocampal regions of normal cognitive people. Zhonghua Yi Xue Za Zhi. 2014;94(41):3234–8.PubMed Dai Z, Chen F, Zhang B, Yao L, Dong C, Xu Y, Zhu B, Zhang X, Li M, Wang H. Application of multi-voxel proton magnetic resonance spectroscopy in different hippocampal regions of normal cognitive people. Zhonghua Yi Xue Za Zhi. 2014;94(41):3234–8.PubMed
32.
go back to reference Bonnici HM, Chadwick MJ, Maguire EA. Representations of recent and remote autobiographical memories in hippocampal subfields. Hippocampus. 2013;23(10):849–54.PubMedCentralCrossRefPubMed Bonnici HM, Chadwick MJ, Maguire EA. Representations of recent and remote autobiographical memories in hippocampal subfields. Hippocampus. 2013;23(10):849–54.PubMedCentralCrossRefPubMed
33.
go back to reference Danjo T, Toyoizumi T, Fujisawa S. Spatial representations of self and other in the hippocampus. Science. 2018;359(6372):213–8.ADSCrossRefPubMed Danjo T, Toyoizumi T, Fujisawa S. Spatial representations of self and other in the hippocampus. Science. 2018;359(6372):213–8.ADSCrossRefPubMed
34.
go back to reference Song D, Wang D, Yang Q, Yan T, Wang Z, Yan Y, Zhao J, Xie Z, Liu Y, Ke Z, et al. The lateralization of left hippocampal CA3 during the retrieval of spatial working memory. Nat Commun. 2020;11(1):2901.ADSPubMedCentralCrossRefPubMed Song D, Wang D, Yang Q, Yan T, Wang Z, Yan Y, Zhao J, Xie Z, Liu Y, Ke Z, et al. The lateralization of left hippocampal CA3 during the retrieval of spatial working memory. Nat Commun. 2020;11(1):2901.ADSPubMedCentralCrossRefPubMed
35.
go back to reference Haller J. The role of central and medial amygdala in normal and abnormal aggression: a review of classical approaches. Neurosci Biobehav Rev. 2018;85:34–43.CrossRefPubMed Haller J. The role of central and medial amygdala in normal and abnormal aggression: a review of classical approaches. Neurosci Biobehav Rev. 2018;85:34–43.CrossRefPubMed
36.
go back to reference Yao Z, Fu Y, Wu J, Zhang W, Yu Y, Zhang Z, Wu X, Wang Y, Hu B. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav. 2020;14(3):653–67.PubMedCentralCrossRefPubMed Yao Z, Fu Y, Wu J, Zhang W, Yu Y, Zhang Z, Wu X, Wang Y, Hu B. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav. 2020;14(3):653–67.PubMedCentralCrossRefPubMed
37.
go back to reference Cao B, Passos IC, Mwangi B, Amaral-Silva H, Tannous J, Wu MJ, Zunta-Soares GB, Soares JC. Hippocampal subfield volumes in mood disorders. Mol Psychiatry. 2017;22(9):1352–8.PubMedCentralCrossRefPubMed Cao B, Passos IC, Mwangi B, Amaral-Silva H, Tannous J, Wu MJ, Zunta-Soares GB, Soares JC. Hippocampal subfield volumes in mood disorders. Mol Psychiatry. 2017;22(9):1352–8.PubMedCentralCrossRefPubMed
38.
go back to reference Zhang L, Hu X, Lu L, Li B, Hu X, Bu X, Li H, Tang S, Gao Y, Yang Y, et al. Anatomic alterations across amygdala subnuclei in medication-free patients with obsessive-compulsive disorder. J Psychiatry Neurosci. 2020;45(5):334–43.PubMedCentralCrossRefPubMed Zhang L, Hu X, Lu L, Li B, Hu X, Bu X, Li H, Tang S, Gao Y, Yang Y, et al. Anatomic alterations across amygdala subnuclei in medication-free patients with obsessive-compulsive disorder. J Psychiatry Neurosci. 2020;45(5):334–43.PubMedCentralCrossRefPubMed
39.
go back to reference Zhang L, Lu L, Bu X, Li H, Tang S, Gao Y, Liang K, Zhang S, Hu X, Wang Y, et al. Alterations in hippocampal subfield and amygdala subregion volumes in posttraumatic subjects with and without posttraumatic stress disorder. Hum Brain Mapp. 2021;42(7):2147–58.PubMedCentralCrossRefPubMed Zhang L, Lu L, Bu X, Li H, Tang S, Gao Y, Liang K, Zhang S, Hu X, Wang Y, et al. Alterations in hippocampal subfield and amygdala subregion volumes in posttraumatic subjects with and without posttraumatic stress disorder. Hum Brain Mapp. 2021;42(7):2147–58.PubMedCentralCrossRefPubMed
40.
go back to reference Roddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, O’Keane V, O’Hanlon E. The Hippocampus in Depression: more than the Sum of its parts? Advanced hippocampal substructure segmentation in Depression. Biol Psychiatry. 2019;85(6):487–97.CrossRefPubMed Roddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, O’Keane V, O’Hanlon E. The Hippocampus in Depression: more than the Sum of its parts? Advanced hippocampal substructure segmentation in Depression. Biol Psychiatry. 2019;85(6):487–97.CrossRefPubMed
41.
go back to reference Maller JJ, Broadhouse K, Rush AJ, Gordon E, Koslow S, Grieve SM. Increased hippocampal tail volume predicts depression status and remission to anti-depressant medications in major depression. Mol Psychiatry. 2018;23(8):1737–44.CrossRefPubMed Maller JJ, Broadhouse K, Rush AJ, Gordon E, Koslow S, Grieve SM. Increased hippocampal tail volume predicts depression status and remission to anti-depressant medications in major depression. Mol Psychiatry. 2018;23(8):1737–44.CrossRefPubMed
42.
go back to reference Brown SSG, Rutland JW, Verma G, Feldman RE, Alper J, Schneider M, Delman BN, Murrough JM, Balchandani P. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with major depressive disorder symptom severity. Sci Rep. 2019;9(1):10166.ADSPubMedCentralCrossRefPubMed Brown SSG, Rutland JW, Verma G, Feldman RE, Alper J, Schneider M, Delman BN, Murrough JM, Balchandani P. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with major depressive disorder symptom severity. Sci Rep. 2019;9(1):10166.ADSPubMedCentralCrossRefPubMed
43.
go back to reference Shunkai L, Su T, Zhong S, Chen G, Zhang Y, Zhao H, Chen P, Tang G, Qi Z, He J et al. Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression. Psychol Med. 2021:1–13. Shunkai L, Su T, Zhong S, Chen G, Zhang Y, Zhao H, Chen P, Tang G, Qi Z, He J et al. Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression. Psychol Med. 2021:1–13.
44.
go back to reference Wu C, Jia L, Mu Q, Fang Z, Hamoudi H, Huang M, Hu S, Zhang P, Xu Y, Lu S. Altered hippocampal subfield volumes in major depressive disorder with and without anhedonia. BMC Psychiatry. 2023;23(1):540.PubMedCentralCrossRefPubMed Wu C, Jia L, Mu Q, Fang Z, Hamoudi H, Huang M, Hu S, Zhang P, Xu Y, Lu S. Altered hippocampal subfield volumes in major depressive disorder with and without anhedonia. BMC Psychiatry. 2023;23(1):540.PubMedCentralCrossRefPubMed
45.
go back to reference Peters EM, Zhang Y, Lodhi R, Li H, Balbuena L. Melancholic features in Bipolar Depression and Response to Lamotrigine: a pooled analysis of five randomized placebo-controlled trials. J Clin Psychopharmacol. 2021;41(3):315–9.PubMedCentralCrossRefPubMed Peters EM, Zhang Y, Lodhi R, Li H, Balbuena L. Melancholic features in Bipolar Depression and Response to Lamotrigine: a pooled analysis of five randomized placebo-controlled trials. J Clin Psychopharmacol. 2021;41(3):315–9.PubMedCentralCrossRefPubMed
46.
go back to reference Yuan L, Chu Z, Chen X, Zhu Y, Xu X, Shen Z. Changes of cortical thickness in the first episode, drug-naive depression patients with and without melancholic features. Psychiatry Res Neuroimaging. 2023;334:111683.CrossRefPubMed Yuan L, Chu Z, Chen X, Zhu Y, Xu X, Shen Z. Changes of cortical thickness in the first episode, drug-naive depression patients with and without melancholic features. Psychiatry Res Neuroimaging. 2023;334:111683.CrossRefPubMed
48.
go back to reference Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. NeuroImage. 2015;115:117–37.CrossRefPubMed Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. NeuroImage. 2015;115:117–37.CrossRefPubMed
49.
go back to reference Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, Stevens A, Van Leemput K, McKee A, Frosch MP, et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. NeuroImage. 2017;155:370–82.CrossRefPubMed Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, Stevens A, Van Leemput K, McKee A, Frosch MP, et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. NeuroImage. 2017;155:370–82.CrossRefPubMed
50.
go back to reference He M, Cheng Y, Chu Z, Wang X, Xu J, Lu Y, Shen Z, Xu X. White Matter Network disruption is Associated with melancholic features in major depressive disorder. Front Psychiatry. 2022;13:816191.PubMedCentralCrossRefPubMed He M, Cheng Y, Chu Z, Wang X, Xu J, Lu Y, Shen Z, Xu X. White Matter Network disruption is Associated with melancholic features in major depressive disorder. Front Psychiatry. 2022;13:816191.PubMedCentralCrossRefPubMed
51.
go back to reference Shan X, Cui X, Liu F, Li H, Huang R, Tang Y, Chen J, Zhao J, Guo W, Xie G. Shared and distinct homotopic connectivity changes in melancholic and non-melancholic depression. J Affect Disord. 2021;287:268–75.CrossRefPubMed Shan X, Cui X, Liu F, Li H, Huang R, Tang Y, Chen J, Zhao J, Guo W, Xie G. Shared and distinct homotopic connectivity changes in melancholic and non-melancholic depression. J Affect Disord. 2021;287:268–75.CrossRefPubMed
52.
go back to reference Nadel L, Hoscheidt S, Ryan LR. Spatial cognition and the hippocampus: the anterior-posterior axis. J Cogn Neurosci. 2013;25(1):22–8.CrossRefPubMed Nadel L, Hoscheidt S, Ryan LR. Spatial cognition and the hippocampus: the anterior-posterior axis. J Cogn Neurosci. 2013;25(1):22–8.CrossRefPubMed
53.
go back to reference DeMaster D, Pathman T, Lee JK, Ghetti S. Structural development of the hippocampus and episodic memory: developmental differences along the anterior/posterior axis. Cereb Cortex. 2014;24(11):3036–45.CrossRefPubMed DeMaster D, Pathman T, Lee JK, Ghetti S. Structural development of the hippocampus and episodic memory: developmental differences along the anterior/posterior axis. Cereb Cortex. 2014;24(11):3036–45.CrossRefPubMed
54.
go back to reference Joca SR, Padovan CM, Guimarães FS. Activation of post-synaptic 5-HT(1A) receptors in the dorsal hippocampus prevents learned helplessness development. Brain Res. 2003;978(1–2):177–84.CrossRefPubMed Joca SR, Padovan CM, Guimarães FS. Activation of post-synaptic 5-HT(1A) receptors in the dorsal hippocampus prevents learned helplessness development. Brain Res. 2003;978(1–2):177–84.CrossRefPubMed
55.
go back to reference Enkel T, Spanagel R, Vollmayr B, Schneider M. Stress triggers anhedonia in rats bred for learned helplessness. Behav Brain Res. 2010;209(1):183–6.CrossRefPubMed Enkel T, Spanagel R, Vollmayr B, Schneider M. Stress triggers anhedonia in rats bred for learned helplessness. Behav Brain Res. 2010;209(1):183–6.CrossRefPubMed
56.
go back to reference Nogovitsyn N, Muller M, Souza R, Hassel S, Arnott SR, Davis AD, Hall GB, Harris JK, Zamyadi M, Metzak PD, et al. Hippocampal tail volume as a predictive biomarker of antidepressant treatment outcomes in patients with major depressive disorder: a CAN-BIND report. Neuropsychopharmacology. 2020;45(2):283–91.CrossRefPubMed Nogovitsyn N, Muller M, Souza R, Hassel S, Arnott SR, Davis AD, Hall GB, Harris JK, Zamyadi M, Metzak PD, et al. Hippocampal tail volume as a predictive biomarker of antidepressant treatment outcomes in patients with major depressive disorder: a CAN-BIND report. Neuropsychopharmacology. 2020;45(2):283–91.CrossRefPubMed
57.
go back to reference Gili M, Roca M, Armengol S, Asensio D, Garcia-Campayo J, Parker G. Clinical patterns and treatment outcome in patients with melancholic, atypical and non-melancholic depressions. PLoS ONE. 2012;7(10):e48200.ADSPubMedCentralCrossRefPubMed Gili M, Roca M, Armengol S, Asensio D, Garcia-Campayo J, Parker G. Clinical patterns and treatment outcome in patients with melancholic, atypical and non-melancholic depressions. PLoS ONE. 2012;7(10):e48200.ADSPubMedCentralCrossRefPubMed
58.
go back to reference Wagner S, Tadić A, Roll SC, Engel A, Dreimüller N, Engelmann J, Lieb K. A combined marker of early non-improvement and the occurrence of melancholic features improve the treatment prediction in patients with Major Depressive disorders. J Affect Disord. 2017;221:184–91.CrossRefPubMed Wagner S, Tadić A, Roll SC, Engel A, Dreimüller N, Engelmann J, Lieb K. A combined marker of early non-improvement and the occurrence of melancholic features improve the treatment prediction in patients with Major Depressive disorders. J Affect Disord. 2017;221:184–91.CrossRefPubMed
59.
go back to reference Espinoza Oyarce DA, Shaw ME, Alateeq K, Cherbuin N. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. J Psychiatry Neurosci. 2020;45(6):406–29.PubMedCentralCrossRefPubMed Espinoza Oyarce DA, Shaw ME, Alateeq K, Cherbuin N. Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. J Psychiatry Neurosci. 2020;45(6):406–29.PubMedCentralCrossRefPubMed
Metadata
Title
Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study
Authors
Zhaosong Chu
Lijin Yuan
Kun Lian
Mengxin He
Yi Lu
Yuqi Cheng
Xiufeng Xu
Zonglin Shen
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2024
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-024-05630-5

Other articles of this Issue 1/2024

BMC Psychiatry 1/2024 Go to the issue