Skip to main content
Top
Published in: Sports Medicine 5/2014

01-05-2014 | Systematic Review

Aerobic Interval Training vs. Moderate Continuous Training in Coronary Artery Disease Patients: A Systematic Review and Meta-Analysis

Authors: Nele Pattyn, Ellen Coeckelberghs, Roselien Buys, Véronique A. Cornelissen, Luc Vanhees

Published in: Sports Medicine | Issue 5/2014

Login to get access

Abstract

Background

Exercise training improves exercise capacity (peakVO2), which is closely related to long-term survival in cardiac patients. However, it remains unclear which type and intensity of exercise is most effective for improving exercise tolerance and body weight. Individual studies suggest that aerobic interval training (AIT) might increase peakVO2 more in this population.

Objective

We conducted a meta-analysis to summarize the effects of AIT compared with moderate continuous training (MCT) on peakVO2, submaximal exercise capacity, and body weight in patients with coronary artery disease (CAD) with preserved and/or reduced left ventricular ejection fraction (LVEF).

Data sources and study selection

A systematic search was conducted and we included randomized trials comparing AIT and MCT in CAD patients lasting at least 4 weeks, reporting peakVO2 results, and published in a peer-reviewed journal up to May 2013. The primary outcome measure was peakVO2. Secondary outcomes were submaximal exercise capacity parameters and body weight.

Synthesis methods

Random- and fixed-effects models were used and data were reported as weighted means and 95 % confidence intervals (CIs).

Results

Nine study groups were included, involving 206 patients (100 AIT, 106 MCT). Overall, AIT resulted in a significantly larger increase in peakVO2 [+1.60 mL/kg/min (95 % CI 0.18–3.02; p = 0.03)] compared with MCT. MCT seemed to be more effective in reducing body weight (−0.78 kg; 95 % CI −0.01 to 1.58; p = 0.05).

Limitations

The small number of studies might have affected the power to reach significance for the secondary outcomes.

Conclusion

In CAD patients with preserved and/or reduced LVEF, AIT is superior to MCT for improving peakVO2, while MCT seems to be more effective in reducing body weight. However, large, well-designed, randomized controlled trials are warranted to confirm these findings.
Literature
2.
go back to reference Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.CrossRefPubMed Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.CrossRefPubMed
3.
go back to reference Vanhees L, Fagard R, Thijs L, et al. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.CrossRefPubMed Vanhees L, Fagard R, Thijs L, et al. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.CrossRefPubMed
4.
go back to reference Myers J, Prakash M, Froelicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.CrossRefPubMed Myers J, Prakash M, Froelicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.CrossRefPubMed
5.
go back to reference Shephard CW, While AE. Cardiac rehabilitation and quality of life: a systematic review. Int J Nurs Stud. 2012;49(6):755–71.CrossRef Shephard CW, While AE. Cardiac rehabilitation and quality of life: a systematic review. Int J Nurs Stud. 2012;49(6):755–71.CrossRef
6.
go back to reference Oldridge N. Exercise-based cardiac rehabilitation in patients with coronary heart disease: meta-analysis outcomes revisited. Future Cardiol. 2012;8(5):729–51.CrossRefPubMed Oldridge N. Exercise-based cardiac rehabilitation in patients with coronary heart disease: meta-analysis outcomes revisited. Future Cardiol. 2012;8(5):729–51.CrossRefPubMed
7.
go back to reference Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46(4):667–75.CrossRefPubMed Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46(4):667–75.CrossRefPubMed
8.
go back to reference Vanhees L, Rauch B, Piepoli M, on behalf of the writing group of the EACPR, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (part III). Eur J Prev Cardiol. 2012;19(6):1333–56.CrossRefPubMed Vanhees L, Rauch B, Piepoli M, on behalf of the writing group of the EACPR, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (part III). Eur J Prev Cardiol. 2012;19(6):1333–56.CrossRefPubMed
9.
go back to reference Vanhees L, Stevens A, Schepers D, et al. Determinants of the effects of physical training and of the complications requiring resuscitation during exercise in patients with cardiovascular disease. Eur J Cardiovasc Prev Rehabil. 2004;11(4):304–12.CrossRefPubMed Vanhees L, Stevens A, Schepers D, et al. Determinants of the effects of physical training and of the complications requiring resuscitation during exercise in patients with cardiovascular disease. Eur J Cardiovasc Prev Rehabil. 2004;11(4):304–12.CrossRefPubMed
10.
go back to reference Rankin AJ, Rankin AC, MacIntyre P, et al. Walk or run? Is high-intensity exercise more effective than moderate-intensity exercise at reducing cardiovascular risk? Scott Med J. 2012;57(2):99–102.CrossRefPubMed Rankin AJ, Rankin AC, MacIntyre P, et al. Walk or run? Is high-intensity exercise more effective than moderate-intensity exercise at reducing cardiovascular risk? Scott Med J. 2012;57(2):99–102.CrossRefPubMed
11.
go back to reference Arena R, Myers J, Forman DE, et al. Should high-intensity-aerobic interval training become the clinical standard in heart failure. Heart Fail Rev. 2013;18(1):95–105.CrossRefPubMed Arena R, Myers J, Forman DE, et al. Should high-intensity-aerobic interval training become the clinical standard in heart failure. Heart Fail Rev. 2013;18(1):95–105.CrossRefPubMed
12.
go back to reference Cornish AK, Broadbent S, Cheema BS. Interval training for patients with coronary artery disease: a systematic review. Eur J Appl Physiol. 2011;111(4):579–89.CrossRefPubMed Cornish AK, Broadbent S, Cheema BS. Interval training for patients with coronary artery disease: a systematic review. Eur J Appl Physiol. 2011;111(4):579–89.CrossRefPubMed
13.
go back to reference O’Donovan G, Owen A, Bird SR, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol. 2005;98(5):1619–25.CrossRefPubMed O’Donovan G, Owen A, Bird SR, et al. Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate- or high-intensity exercise of equal energy cost. J Appl Physiol. 2005;98(5):1619–25.CrossRefPubMed
14.
go back to reference Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42(7):587–605.CrossRefPubMed Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42(7):587–605.CrossRefPubMed
15.
go back to reference Wisløff U, Støylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.CrossRefPubMed Wisløff U, Støylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.CrossRefPubMed
16.
go back to reference Smart NA, Dieberg G, Giallauria F. Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis. Int J Cardiol. 2013;166(2):352–8.CrossRefPubMed Smart NA, Dieberg G, Giallauria F. Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis. Int J Cardiol. 2013;166(2):352–8.CrossRefPubMed
17.
go back to reference Haykowsky MJ, Timmons MP, Kruger C, et al. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol. 2013;111(10):1466–9.CrossRefPubMed Haykowsky MJ, Timmons MP, Kruger C, et al. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol. 2013;111(10):1466–9.CrossRefPubMed
18.
go back to reference Rognmo Ø, Hetland E, Helgerud J, et al. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004;11(3):216–22.CrossRefPubMed Rognmo Ø, Hetland E, Helgerud J, et al. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004;11(3):216–22.CrossRefPubMed
19.
go back to reference Warburton DE, McKenzie DC, Haykowsky MJ, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 2005;95(9):1080–4.CrossRefPubMed Warburton DE, McKenzie DC, Haykowsky MJ, et al. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 2005;95(9):1080–4.CrossRefPubMed
20.
go back to reference Rocco EA, Prado DM, Silva AG, et al. Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease. Clinics. 2012;67(6):623–7.CrossRefPubMedCentralPubMed Rocco EA, Prado DM, Silva AG, et al. Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease. Clinics. 2012;67(6):623–7.CrossRefPubMedCentralPubMed
21.
go back to reference Moholdt TT, Amundsen BH, Rustad LA, et al. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J. 2009;158(6):1031–7.CrossRefPubMed Moholdt TT, Amundsen BH, Rustad LA, et al. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. Am Heart J. 2009;158(6):1031–7.CrossRefPubMed
22.
go back to reference Dimopoulos S, Anastatiou-Nana M, Sakellariou D, et al. Effects of exercise rehabilitation program on heart rate recovery in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2006;13(1):67–73.PubMed Dimopoulos S, Anastatiou-Nana M, Sakellariou D, et al. Effects of exercise rehabilitation program on heart rate recovery in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2006;13(1):67–73.PubMed
23.
go back to reference Vanhees L, Geladas N, Hansen D, on behalf of the writing group of the EACPR, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR (part II). Eur J Prev Cardiol. 2012;19(5):1005–33.CrossRefPubMed Vanhees L, Geladas N, Hansen D, on behalf of the writing group of the EACPR, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR (part II). Eur J Prev Cardiol. 2012;19(5):1005–33.CrossRefPubMed
25.
go back to reference De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.CrossRefPubMed De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–33.CrossRefPubMed
26.
go back to reference Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.PubMed
27.
go back to reference Follman D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. Clin Epidemiol. 1992;45(7):769–73.CrossRef Follman D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. Clin Epidemiol. 1992;45(7):769–73.CrossRef
28.
go back to reference Moholdt T, Aamot IL, Granøien I, et al. Aerobic interval training increases peak oxygen uptake more than usual care exercise training in myocardial infarction patients: a randomized controlled study. Clin Rehabil. 2012;26(1):33–44.CrossRefPubMed Moholdt T, Aamot IL, Granøien I, et al. Aerobic interval training increases peak oxygen uptake more than usual care exercise training in myocardial infarction patients: a randomized controlled study. Clin Rehabil. 2012;26(1):33–44.CrossRefPubMed
29.
30.
go back to reference Hunter JE, Schmidt FL. Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. Int J Sel Assess. 2000;8(4):275–92.CrossRef Hunter JE, Schmidt FL. Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. Int J Sel Assess. 2000;8(4):275–92.CrossRef
31.
go back to reference Roditis P, Dimopoulos S, Sakellariou D, et al. The effects of exercise training on the kinetics of oxygen uptake in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2007;14(2):304–11.PubMed Roditis P, Dimopoulos S, Sakellariou D, et al. The effects of exercise training on the kinetics of oxygen uptake in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2007;14(2):304–11.PubMed
32.
go back to reference Amundsen BH, Rognmo Ø, Hatlen-Rebhan G, et al. High-intensity aerobic exercise improves diastolic function in coronary artery disease. Scand Cardiovasc J. 2008;42(2):110–7.CrossRefPubMed Amundsen BH, Rognmo Ø, Hatlen-Rebhan G, et al. High-intensity aerobic exercise improves diastolic function in coronary artery disease. Scand Cardiovasc J. 2008;42(2):110–7.CrossRefPubMed
33.
go back to reference Fu TC, Wang CH, Lin PS, et al. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol. 2013;167(1):41–50.CrossRefPubMed Fu TC, Wang CH, Lin PS, et al. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol. 2013;167(1):41–50.CrossRefPubMed
34.
go back to reference Iellamo F, Manzi V, Caminiti G, et al. Dose–response relationship of baroreflex sensitivity and heart rate variability to individually-tailored exercise training in patients with heart failure. Int J Cardiol. 2013;166(2):334–9.CrossRefPubMed Iellamo F, Manzi V, Caminiti G, et al. Dose–response relationship of baroreflex sensitivity and heart rate variability to individually-tailored exercise training in patients with heart failure. Int J Cardiol. 2013;166(2):334–9.CrossRefPubMed
35.
go back to reference Freyssin C, Verkindt C, Prieur F, et al. Cardiac rehabilitation in chronic heart failure: effect of an 8-week, high intensity interval training versus continuous training. Arch Phys Med Rehabil. 2012;93(8):1359–64.CrossRefPubMed Freyssin C, Verkindt C, Prieur F, et al. Cardiac rehabilitation in chronic heart failure: effect of an 8-week, high intensity interval training versus continuous training. Arch Phys Med Rehabil. 2012;93(8):1359–64.CrossRefPubMed
36.
go back to reference Iellamo F, Manzi V, Caminiti G, et al. Matched dose interval and continuous exercise training induce similar cardiorespiratory and metabolic adaptations in patients with heart failure. Int J Cardiol. 2013;167(6):2561–5.CrossRefPubMed Iellamo F, Manzi V, Caminiti G, et al. Matched dose interval and continuous exercise training induce similar cardiorespiratory and metabolic adaptations in patients with heart failure. Int J Cardiol. 2013;167(6):2561–5.CrossRefPubMed
37.
go back to reference Moholdt T, Aamot IL, Granøien I, et al. Long-term follow-up after cardiac rehabilitation: a randomized study of usual care exercise training versus aerobic interval training after myocardial infarction. Int J Cardiol. 2011;152(3):388–90.CrossRefPubMed Moholdt T, Aamot IL, Granøien I, et al. Long-term follow-up after cardiac rehabilitation: a randomized study of usual care exercise training versus aerobic interval training after myocardial infarction. Int J Cardiol. 2011;152(3):388–90.CrossRefPubMed
38.
go back to reference Smart NA, Steele M. A comparison of 16 weeks of continuous vs intermittent exercise training in chronic heart failure patients. Congest Heart Fail. 2012;18(4):205–11.CrossRefPubMed Smart NA, Steele M. A comparison of 16 weeks of continuous vs intermittent exercise training in chronic heart failure patients. Congest Heart Fail. 2012;18(4):205–11.CrossRefPubMed
39.
go back to reference Currie KD, Dubberley JB, McKelvie RS, et al. Low-volume, high-intensity interval training in patients with coronary artery disease. Med Sci Sports Exerc. 2013;45(8):1436–42.CrossRefPubMed Currie KD, Dubberley JB, McKelvie RS, et al. Low-volume, high-intensity interval training in patients with coronary artery disease. Med Sci Sports Exerc. 2013;45(8):1436–42.CrossRefPubMed
40.
go back to reference Fletcher GF, Balady GJ, Amsterdam EA, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694–740.CrossRefPubMed Fletcher GF, Balady GJ, Amsterdam EA, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694–740.CrossRefPubMed
41.
go back to reference Mezzani A, Agostoni P, Cohen-Solal A, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2009;16(3):249–67.CrossRefPubMed Mezzani A, Agostoni P, Cohen-Solal A, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2009;16(3):249–67.CrossRefPubMed
42.
go back to reference Keteyian SJ, Brawner CA, Savage PD, et al. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am Heart J. 2008;156(2):292–300.CrossRefPubMed Keteyian SJ, Brawner CA, Savage PD, et al. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am Heart J. 2008;156(2):292–300.CrossRefPubMed
43.
go back to reference Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev. 2011;31(6):378–85.CrossRefPubMed Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev. 2011;31(6):378–85.CrossRefPubMed
44.
go back to reference Tomczak CR, Thompson RB, Paterson I, et al. Effect of acute high-intensity interval exercise on postexercise biventricular function in mild heart failure. J Appl Physiol. 2011;110(2):398–406.CrossRefPubMed Tomczak CR, Thompson RB, Paterson I, et al. Effect of acute high-intensity interval exercise on postexercise biventricular function in mild heart failure. J Appl Physiol. 2011;110(2):398–406.CrossRefPubMed
45.
go back to reference Nechwatal RM, Duck C, Gruber G. Physical training as interval or continuous training in chronic heart failure for improving functional capacity, hemodynamics and quality of life: a controlled study. Z Kardiol. 2002;91(4):328–37.CrossRefPubMed Nechwatal RM, Duck C, Gruber G. Physical training as interval or continuous training in chronic heart failure for improving functional capacity, hemodynamics and quality of life: a controlled study. Z Kardiol. 2002;91(4):328–37.CrossRefPubMed
46.
go back to reference Tjønna AE, Lee SJ, Rognmo Ø, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54.CrossRefPubMedCentralPubMed Tjønna AE, Lee SJ, Rognmo Ø, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54.CrossRefPubMedCentralPubMed
47.
go back to reference Guazzi M, Vitelli A, Arena R. The effect of exercise training on plasma NT-pro-BNP levels and its correlation with improved exercise ventilator efficiency in patients with heart failure. Int J Cardiol. 2012;158(2):290–1.CrossRefPubMed Guazzi M, Vitelli A, Arena R. The effect of exercise training on plasma NT-pro-BNP levels and its correlation with improved exercise ventilator efficiency in patients with heart failure. Int J Cardiol. 2012;158(2):290–1.CrossRefPubMed
48.
go back to reference Van de Veire NR, Van Laethem C, Philippé J, et al. VE/VCO2 slope and oxygen uptake efficiency slope in patients with coronary artery disease and intermediate peakVO2. Eur J Cardiovasc Prev Rehabil. 2006;13(6):916–23.CrossRefPubMed Van de Veire NR, Van Laethem C, Philippé J, et al. VE/VCO2 slope and oxygen uptake efficiency slope in patients with coronary artery disease and intermediate peakVO2. Eur J Cardiovasc Prev Rehabil. 2006;13(6):916–23.CrossRefPubMed
49.
go back to reference Sarullo FM, Fazio G, Brusca I, et al. Cardiopulmonary exercise testing in patients with chronic heart failure: prognostic comparison from peak VO2 and VE/VCO2 slope. Open Cardiovasc Med J. 2010;26(4):127–34.CrossRef Sarullo FM, Fazio G, Brusca I, et al. Cardiopulmonary exercise testing in patients with chronic heart failure: prognostic comparison from peak VO2 and VE/VCO2 slope. Open Cardiovasc Med J. 2010;26(4):127–34.CrossRef
50.
go back to reference Cahalin LP, Chase P, Arena R, et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev. 2013;18(1):79–94.CrossRefPubMed Cahalin LP, Chase P, Arena R, et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Fail Rev. 2013;18(1):79–94.CrossRefPubMed
51.
go back to reference Guazzi M, Adams V, Conraads V, et al. EACPR/AHA Scientific Statement: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J. 2012;33(12):2917–27.PubMed Guazzi M, Adams V, Conraads V, et al. EACPR/AHA Scientific Statement: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J. 2012;33(12):2917–27.PubMed
52.
go back to reference Hansen D, Dendale P, van Loon LJ, Meeusen R. The impact of training modalities on the clinical benefits of exercise intervention in patients with cardiovascular disease or type 2 diabetes mellitus. Sports Med. 2010;40(11):921–40.CrossRefPubMed Hansen D, Dendale P, van Loon LJ, Meeusen R. The impact of training modalities on the clinical benefits of exercise intervention in patients with cardiovascular disease or type 2 diabetes mellitus. Sports Med. 2010;40(11):921–40.CrossRefPubMed
53.
go back to reference Thompson PD, Franklin BA, Balady GJ, et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115(17):2358–68.CrossRefPubMed Thompson PD, Franklin BA, Balady GJ, et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115(17):2358–68.CrossRefPubMed
54.
go back to reference Rognmo Ø, Moholdt T, Bakken H, et al. Cardiovascular risk of high- versus moderate intensity aerobic exercise in coronary heart disease patients. Circulation. 2012;126(12):1436–40.CrossRefPubMed Rognmo Ø, Moholdt T, Bakken H, et al. Cardiovascular risk of high- versus moderate intensity aerobic exercise in coronary heart disease patients. Circulation. 2012;126(12):1436–40.CrossRefPubMed
55.
go back to reference Fagard RH, Staessen JA, Thijs L. Advantages and disadvantages of the meta-analysis approach. J Hypertens Suppl. 1996;14(2):S9–12.CrossRefPubMed Fagard RH, Staessen JA, Thijs L. Advantages and disadvantages of the meta-analysis approach. J Hypertens Suppl. 1996;14(2):S9–12.CrossRefPubMed
Metadata
Title
Aerobic Interval Training vs. Moderate Continuous Training in Coronary Artery Disease Patients: A Systematic Review and Meta-Analysis
Authors
Nele Pattyn
Ellen Coeckelberghs
Roselien Buys
Véronique A. Cornelissen
Luc Vanhees
Publication date
01-05-2014
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 5/2014
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-014-0158-x

Other articles of this Issue 5/2014

Sports Medicine 5/2014 Go to the issue