Skip to main content
Top
Published in: Current Osteoporosis Reports 4/2014

01-12-2014 | Skeletal Development (E Schipani and E Zelzer, Section Editors)

Aerobic Glycolysis in Osteoblasts

Authors: Emel Esen, Fanxin Long

Published in: Current Osteoporosis Reports | Issue 4/2014

Login to get access

Abstract

Osteoblasts, the chief bone-making cells in the body, are a focus of osteoporosis research. Although teriparatide, a synthetic fragment of the human parathyroid hormone (PTH), has been an effective bone anabolic drug, there remains a clinical need for additional therapeutics that safely stimulates osteoblast number and function. Work in the past several decades has provided unprecedented clarity about the roles of growth factors and transcription factors in regulating osteoblast differentiation and activity, but whether these factors may regulate cellular metabolism to influence cell fate and function has been largely unexplored. The past few years have witnessed a resurgence of interest in the cellular metabolism of osteoblasts, with the hope that elucidation of their metabolic profile may open new avenues for developing bone anabolic agents. Here we review the current understanding about glucose metabolism in osteoblasts.
Literature
1.
go back to reference Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27–38.CrossRef Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27–38.CrossRef
3.
go back to reference Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49.PubMedCrossRef Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49.PubMedCrossRef
4.
go back to reference Feng JQ, Clinkenbeard EL, Yuan B, White KE, Drezner MK. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone. 2013;54(2):213–21.PubMedCrossRefPubMedCentral Feng JQ, Clinkenbeard EL, Yuan B, White KE, Drezner MK. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone. 2013;54(2):213–21.PubMedCrossRefPubMedCentral
5.
go back to reference Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.PubMedCrossRef Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.PubMedCrossRef
6.
go back to reference Bell GI, Burant CF, Takeda J, Gould GW. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993;268(26):19161–4.PubMed Bell GI, Burant CF, Takeda J, Gould GW. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993;268(26):19161–4.PubMed
8.
go back to reference Bouche C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 2004;25(5):807–30.PubMedCrossRef Bouche C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 2004;25(5):807–30.PubMedCrossRef
9.
go back to reference Kopperschlager G, Kirchberger J. Methods for the separation of lactate dehydrogenases and clinical significance of the enzyme. J Chromatogr B Biomed Appl. 1996;684(1–2):25–49.PubMedCrossRef Kopperschlager G, Kirchberger J. Methods for the separation of lactate dehydrogenases and clinical significance of the enzyme. J Chromatogr B Biomed Appl. 1996;684(1–2):25–49.PubMedCrossRef
10.
go back to reference Perl A, Hanczko R, Telarico T, Oaks Z, Landas S. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med. 2011;17(7):395–403.PubMedCrossRefPubMedCentral Perl A, Hanczko R, Telarico T, Oaks Z, Landas S. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med. 2011;17(7):395–403.PubMedCrossRefPubMedCentral
11.
go back to reference Wamelink MM, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis. 2008;31(6):703–17.PubMedCrossRef Wamelink MM, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis. 2008;31(6):703–17.PubMedCrossRef
12.
go back to reference Teo CF, Wollaston-Hayden EE, Wells L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol. 2010;318(1–2):44–53.PubMedCrossRefPubMedCentral Teo CF, Wollaston-Hayden EE, Wells L. Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol. 2010;318(1–2):44–53.PubMedCrossRefPubMedCentral
13.
go back to reference Thomas DM, Rogers SD, Ng KW, Best JD. Dexamethasone modulates insulin receptor expression and subcellular distribution of the glucose transporter GLUT 1 in UMR 106-01, a clonal osteogenic sarcoma cell line. J Mol Endocrinol. 1996;17(1):7–17.PubMedCrossRef Thomas DM, Rogers SD, Ng KW, Best JD. Dexamethasone modulates insulin receptor expression and subcellular distribution of the glucose transporter GLUT 1 in UMR 106-01, a clonal osteogenic sarcoma cell line. J Mol Endocrinol. 1996;17(1):7–17.PubMedCrossRef
14.
go back to reference Thomas DM, Maher F, Rogers SD, Best JD. Expression and regulation by insulin of GLUT 3 in UMR 106-01, a clonal rat osteosarcoma cell line. Biochem Biophys Res Commun. 1996;218(3):789–93.PubMedCrossRef Thomas DM, Maher F, Rogers SD, Best JD. Expression and regulation by insulin of GLUT 3 in UMR 106-01, a clonal rat osteosarcoma cell line. Biochem Biophys Res Commun. 1996;218(3):789–93.PubMedCrossRef
15.
go back to reference Rolland F, Winderickx J, Thevelein JM. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci. 2001;26(5):310–7.PubMedCrossRef Rolland F, Winderickx J, Thevelein JM. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci. 2001;26(5):310–7.PubMedCrossRef
16.
go back to reference Borle AB, Nichols N, Nichols Jr G. Metabolic studies of bone in vitro. I. Normal bone. J Biol Chem. 1960;235:1206–10.PubMed Borle AB, Nichols N, Nichols Jr G. Metabolic studies of bone in vitro. I. Normal bone. J Biol Chem. 1960;235:1206–10.PubMed
17.
go back to reference Cohn DV, Forscher BK. Aerobic metabolism of glucose by bone. J Biol Chem. 1962;237:615–8.PubMed Cohn DV, Forscher BK. Aerobic metabolism of glucose by bone. J Biol Chem. 1962;237:615–8.PubMed
18.
go back to reference Flanagan B, Nichols Jr G. Metabolic studies of bone in vitro. V. glucose metabolism and collagen biosynthesis. J Biol Chem. 1964;239:1261–5.PubMed Flanagan B, Nichols Jr G. Metabolic studies of bone in vitro. V. glucose metabolism and collagen biosynthesis. J Biol Chem. 1964;239:1261–5.PubMed
19.
go back to reference Peck WA, Birge Jr SJ, Fedak SA. Bone cells: biochemical and biological studies after enzymatic isolation. Science. 1964;146(3650):1476–7.PubMedCrossRef Peck WA, Birge Jr SJ, Fedak SA. Bone cells: biochemical and biological studies after enzymatic isolation. Science. 1964;146(3650):1476–7.PubMedCrossRef
20.•
go back to reference Guntur AR, Le PT, Farber CR, Rosen CJ. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology. 2014;155(5):1589–95. This study shows that both glycolysis and oxygen comsumption increase during calvarial osteoblast differentiation but mature osteoblasts are more dependent on glycolysis. In addition, oxygen consumption rates in calvarial osteoblast cultures positively correlate with bone formation rate in vivo across different inbred mouse strains. Guntur AR, Le PT, Farber CR, Rosen CJ. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass. Endocrinology. 2014;155(5):1589–95. This study shows that both glycolysis and oxygen comsumption increase during calvarial osteoblast differentiation but mature osteoblasts are more dependent on glycolysis. In addition, oxygen consumption rates in calvarial osteoblast cultures positively correlate with bone formation rate in vivo across different inbred mouse strains.
21.•
go back to reference Regan JN, Lim J, Shi Y, et al. Up-regulation of glycolytic metabolism is required for HIF1alpha-driven bone formation. Proc Natl Acad Sci U S A. 2014;111(23):8673–8. This work provides evidence that increased glycolysis contributes to more robust cancellous bone formation in the mouse.PubMedCrossRef Regan JN, Lim J, Shi Y, et al. Up-regulation of glycolytic metabolism is required for HIF1alpha-driven bone formation. Proc Natl Acad Sci U S A. 2014;111(23):8673–8. This work provides evidence that increased glycolysis contributes to more robust cancellous bone formation in the mouse.PubMedCrossRef
23.
go back to reference Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.PubMedCrossRef Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.PubMedCrossRef
24.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedCrossRefPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedCrossRefPubMedCentral
26.
go back to reference Costello LC, Franklin RB, Reynolds MA, Chellaiah M. The important role of osteoblasts and citrate production in bone formation: “Osteoblast Citration” as a new concept for an old relationship. Open Bone J. 2012;4. Costello LC, Franklin RB, Reynolds MA, Chellaiah M. The important role of osteoblasts and citrate production in bone formation: “Osteoblast Citration” as a new concept for an old relationship. Open Bone J. 2012;4.
27.
28.
go back to reference Kenny AD, Draskoczy PR, Goldhaber P. Citric acid production by resorbing bone in tissue culture. Am J Physiol. 1959;197:502–4.PubMed Kenny AD, Draskoczy PR, Goldhaber P. Citric acid production by resorbing bone in tissue culture. Am J Physiol. 1959;197:502–4.PubMed
30.
go back to reference Costello LC, Liu Y, Franklin RB, Kennedy MC. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem. 1997;272(46):28875–81.PubMedCrossRef Costello LC, Liu Y, Franklin RB, Kennedy MC. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem. 1997;272(46):28875–81.PubMedCrossRef
31.
go back to reference Alhava EM, Olkkonen H, Puittinen J, Nokso-Koivisto VM. Zinc content of human cancellous bone. Acta Orthop Scand. 1977;48(1):1–4.PubMedCrossRef Alhava EM, Olkkonen H, Puittinen J, Nokso-Koivisto VM. Zinc content of human cancellous bone. Acta Orthop Scand. 1977;48(1):1–4.PubMedCrossRef
32.
go back to reference Inoue K, Matsuda K, Itoh M, et al. Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet. 2002;11(15):1775–84.PubMedCrossRef Inoue K, Matsuda K, Itoh M, et al. Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet. 2002;11(15):1775–84.PubMedCrossRef
33.
go back to reference Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB, Gupta A. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone. 2006;38(2):181–98.PubMedCrossRef Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB, Gupta A. Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone. 2006;38(2):181–98.PubMedCrossRef
34.
go back to reference Borle AB, Nichols N, Nichols Jr G. Metabolic studies of bone in vitro. II. The metabolic patterns of accretion and resorption. J Biol Chem. 1960;235:1211–4.PubMed Borle AB, Nichols N, Nichols Jr G. Metabolic studies of bone in vitro. II. The metabolic patterns of accretion and resorption. J Biol Chem. 1960;235:1211–4.PubMed
35.
go back to reference Neuman WF, Neuman MW, Brommage R. Aerobic glycolysis in bone: lactate production and gradients in calvaria. Am J Physiol. 1978;234(1):C41–50.PubMed Neuman WF, Neuman MW, Brommage R. Aerobic glycolysis in bone: lactate production and gradients in calvaria. Am J Physiol. 1978;234(1):C41–50.PubMed
36.
go back to reference Rodan GA, Rodan SB, Marks Jr SC. Parathyroid hormone stimulation of adenylate cyclase activity and lactic acid accumulation in calvaria of osteopetrotic (ia) rats. Endocrinology. 1978;102(5):1501–5.PubMedCrossRef Rodan GA, Rodan SB, Marks Jr SC. Parathyroid hormone stimulation of adenylate cyclase activity and lactic acid accumulation in calvaria of osteopetrotic (ia) rats. Endocrinology. 1978;102(5):1501–5.PubMedCrossRef
37.
go back to reference Zoidis E, Ghirlanda-Keller C, Schmid C. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol Cell Biochem. 2011;348(1–2):33–42.PubMedCrossRef Zoidis E, Ghirlanda-Keller C, Schmid C. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol Cell Biochem. 2011;348(1–2):33–42.PubMedCrossRef
38.
go back to reference Maupin KA, Droscha CJ, Williams BO. A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/b-catenin signaling in humans and mice. Bone Res. 2013;1(1):27–71.CrossRef Maupin KA, Droscha CJ, Williams BO. A comprehensive overview of skeletal phenotypes associated with alterations in Wnt/b-catenin signaling in humans and mice. Bone Res. 2013;1(1):27–71.CrossRef
39.•
go back to reference Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013;17(5):745–55. This work provides evidence that Wnt signaling directly stimulates aerobic glycolysis during osteoblast differentiation.PubMedCrossRefPubMedCentral Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013;17(5):745–55. This work provides evidence that Wnt signaling directly stimulates aerobic glycolysis during osteoblast differentiation.PubMedCrossRefPubMedCentral
40.
go back to reference Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Investig. 2000;23(5):295–303.CrossRef Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Investig. 2000;23(5):295–303.CrossRef
41.
go back to reference Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7):1192–7.PubMedCrossRef Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7):1192–7.PubMedCrossRef
42.
go back to reference Loder RT. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res. 1988;232:210–6.PubMed Loder RT. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res. 1988;232:210–6.PubMed
43.
go back to reference Levin ME, Boisseau VC, Avioli LV. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med. 1976;294(5):241–5.PubMedCrossRef Levin ME, Boisseau VC, Avioli LV. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med. 1976;294(5):241–5.PubMedCrossRef
44.
go back to reference Verhaeghe J, van Herck E, Visser WJ, et al. Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes. 1990;39(4):477–82.PubMedCrossRef Verhaeghe J, van Herck E, Visser WJ, et al. Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes. 1990;39(4):477–82.PubMedCrossRef
45.
go back to reference Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144(1):346–52.PubMedCrossRef Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144(1):346–52.PubMedCrossRef
46.
go back to reference Gandhi A, Beam HA, O'Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone. 2005;37(4):482–90.PubMedCrossRef Gandhi A, Beam HA, O'Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone. 2005;37(4):482–90.PubMedCrossRef
47.
48.
go back to reference Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309–19.PubMedCrossRefPubMedCentral Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309–19.PubMedCrossRefPubMedCentral
49.
go back to reference Thrailkill K, Bunn RC, Lumpkin Jr C, et al. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone. J Diabetes Res. 2014;2014:703589.PubMedCrossRefPubMedCentral Thrailkill K, Bunn RC, Lumpkin Jr C, et al. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone. J Diabetes Res. 2014;2014:703589.PubMedCrossRefPubMedCentral
50.
go back to reference Kawai M, Rosen CJ. The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin N Am. 2012;41(2):323–33. vi.CrossRef Kawai M, Rosen CJ. The insulin-like growth factor system in bone: basic and clinical implications. Endocrinol Metab Clin N Am. 2012;41(2):323–33. vi.CrossRef
51.
go back to reference Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev. 2001;22(6):818–35.PubMedCrossRef Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev. 2001;22(6):818–35.PubMedCrossRef
52.
go back to reference Bikle D, Majumdar S, Laib A, et al. The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res. 2001;16(12):2320–9.PubMedCrossRef Bikle D, Majumdar S, Laib A, et al. The skeletal structure of insulin-like growth factor I-deficient mice. J Bone Miner Res. 2001;16(12):2320–9.PubMedCrossRef
53.
go back to reference Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141(7):2674–82.PubMed Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141(7):2674–82.PubMed
54.
go back to reference Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S. Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology. 2007;148(12):5706–15.PubMedCrossRefPubMedCentral Govoni KE, Wergedal JE, Florin L, Angel P, Baylink DJ, Mohan S. Conditional deletion of insulin-like growth factor-I in collagen type 1alpha2-expressing cells results in postnatal lethality and a dramatic reduction in bone accretion. Endocrinology. 2007;148(12):5706–15.PubMedCrossRefPubMedCentral
55.
go back to reference Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18(7):1095–101. Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18(7):1095–101.
56.
go back to reference Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277(46):44005–12.PubMedCrossRef Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277(46):44005–12.PubMedCrossRef
57.
go back to reference Brabant G, von zur Muhlen A, Wuster C, et al. Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study. Horm Res. 2003;60(2):53–60.PubMedCrossRef Brabant G, von zur Muhlen A, Wuster C, et al. Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study. Horm Res. 2003;60(2):53–60.PubMedCrossRef
58.
go back to reference Seck T, Scheppach B, Scharla S, et al. Concentration of insulin-like growth factor (IGF)-I and -II in iliac crest bone matrix from pre- and postmenopausal women: relationship to age, menopause, bone turnover, bone volume, and circulating IGFs. J Clin Endocrinol Metab. 1998;83(7):2331–7.PubMed Seck T, Scheppach B, Scharla S, et al. Concentration of insulin-like growth factor (IGF)-I and -II in iliac crest bone matrix from pre- and postmenopausal women: relationship to age, menopause, bone turnover, bone volume, and circulating IGFs. J Clin Endocrinol Metab. 1998;83(7):2331–7.PubMed
59.
go back to reference Cao JJ, Kurimoto P, Boudignon B, Rosen C, Lima F, Halloran BP. Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J Bone Miner Res. 2007;22(8):1271–9.PubMedCrossRef Cao JJ, Kurimoto P, Boudignon B, Rosen C, Lima F, Halloran BP. Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J Bone Miner Res. 2007;22(8):1271–9.PubMedCrossRef
60.
go back to reference Bikle DD, Sakata T, Leary C, et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res. 2002;17(9):1570–8.PubMedCrossRef Bikle DD, Sakata T, Leary C, et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J Bone Miner Res. 2002;17(9):1570–8.PubMedCrossRef
61.
go back to reference Wang Y, Nishida S, Boudignon BM, et al. IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res. 2007;22(9):1329–37.PubMedCrossRef Wang Y, Nishida S, Boudignon BM, et al. IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res. 2007;22(9):1329–37.PubMedCrossRef
62.
go back to reference Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology. 2001;142(10):4349–56.PubMedCrossRef Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology. 2001;142(10):4349–56.PubMedCrossRef
Metadata
Title
Aerobic Glycolysis in Osteoblasts
Authors
Emel Esen
Fanxin Long
Publication date
01-12-2014
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 4/2014
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-014-0235-y

Other articles of this Issue 4/2014

Current Osteoporosis Reports 4/2014 Go to the issue

Therapeutics and Medical Management (E Shane and RA Adler, Section Editors)

Osteoporosis Diagnosis in Men: The T-Score Controversy Revisited

Therapeutics and Medical Management (E Shane and RA Adler, Section Editors)

Calcium Use in the Management of Osteoporosis: Continuing Questions and Controversies

Imaging (T Lang and F Wehrli, Section Editors)

Micro- and Nano-CT for the Study of Bone Ultrastructure

Imaging (T Lang and F Wehrli, Section Editors)

Imaging of the Muscle-Bone Relationship