Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2022

Open Access 01-12-2022 | Research

Aerobic capacity and skeletal muscle characteristics in glycogen storage disease IIIa: an observational study

Authors: Philip J. Hennis, Elaine Murphy, Rick I. Meijer, Robin H. Lachmann, Radha Ramachandran, Claire Bordoli, Gurinder Rayat, David J. Tomlinson

Published in: Orphanet Journal of Rare Diseases | Issue 1/2022

Login to get access

Abstract

Background

Individuals with glycogen storage disease IIIa (GSD IIIa) (OMIM #232400) experience muscle weakness and exercise limitation that worsen through adulthood. However, normative data for markers of physical capacity, such as strength and cardiovascular fitness, are limited. Furthermore, the impact of the disease on muscle size and quality is unstudied in weight bearing skeletal muscle, a key predictor of physical function. We aim to produce normative reference values of aerobic capacity and strength in individuals with GSD IIIa, and to investigate the role of muscle size and quality on exercise impairment.

Results

Peak oxygen uptake (V̇O2peak) was lower in the individuals with GSD IIIa than predicted based on demographic data (17.0 (9.0) ml/kg/min, 53 (24)% of predicted, p = 0.001). Knee extension maximum voluntary contraction (MVC) was also substantially lower than age matched predicted values (MVC: 146 (116) Nm, 57% predicted, p = 0.045), though no difference was found in MVC relative to body mass (1.88 (2.74) Nm/kg, 61% of predicted, p = 0.263). There was a strong association between aerobic capacity and maximal leg strength (r = 0.920; p = 0.003). Substantial inter-individual variation was present, with a high physical capacity group that had normal leg strength (MVC), and relatively high V̇O2peak, and a low physical capacity that display impaired strength and substantially lower V̇O2peak. The higher physical capacity sub-group were younger, had larger Vastus Lateralis (VL) muscles, greater muscle quality, undertook more physical activity (PA), and reported higher health-related quality of life.

Conclusions

V̇O2peak and knee extension strength are lower in individuals with GSD IIIa than predicted based on their demographic data. Patients with higher physical capacity have superior muscle size and structure characteristics and higher health-related quality of life, than those with lower physical capacity. This study provides normative values of these important markers of physical capacity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bao Y, Dawson TL Jr, Chen YT. Human glycogen debranching enzyme gene (AGL): complete structural organization and characterization of the 5′ flanking region. Genomics. 1996;38(2):155–65.PubMed Bao Y, Dawson TL Jr, Chen YT. Human glycogen debranching enzyme gene (AGL): complete structural organization and characterization of the 5′ flanking region. Genomics. 1996;38(2):155–65.PubMed
2.
go back to reference Ko JS, Moon JS, Seo JK, Yang HR, Chang JY, Park SS. A mutation analysis of the AGL gene in Korean patients with glycogen storage disease type III. J Hum Genet. 2014;59(1):42–5.PubMed Ko JS, Moon JS, Seo JK, Yang HR, Chang JY, Park SS. A mutation analysis of the AGL gene in Korean patients with glycogen storage disease type III. J Hum Genet. 2014;59(1):42–5.PubMed
3.
go back to reference Kiechl S, Kohlendorfer U, Thaler C, Skladal D, Jaksch M, Obermaier-Kusser B, et al. Different clinical aspects of debrancher deficiency myopathy. J Neurol Neurosurg Psychiatry. 1999;67(3):364–8.PubMedPubMedCentral Kiechl S, Kohlendorfer U, Thaler C, Skladal D, Jaksch M, Obermaier-Kusser B, et al. Different clinical aspects of debrancher deficiency myopathy. J Neurol Neurosurg Psychiatry. 1999;67(3):364–8.PubMedPubMedCentral
4.
go back to reference Lucchiari S, Santoro D, Pagliarani S, Comi GP. Clinical, biochemical and genetic features of glycogen debranching enzyme deficiency. Acta Myol. 2007;26(1):72–4.PubMedPubMedCentral Lucchiari S, Santoro D, Pagliarani S, Comi GP. Clinical, biochemical and genetic features of glycogen debranching enzyme deficiency. Acta Myol. 2007;26(1):72–4.PubMedPubMedCentral
5.
go back to reference Berling É, Laforêt P, Wahbi K, Labrune P, Petit F, Ronzitti G, et al. Narrative review of glycogen storage disorder type III with a focus on neuromuscular, cardiac and therapeutic aspects. J Inherit Metab Dis. 2021;44(3):521–33.PubMed Berling É, Laforêt P, Wahbi K, Labrune P, Petit F, Ronzitti G, et al. Narrative review of glycogen storage disorder type III with a focus on neuromuscular, cardiac and therapeutic aspects. J Inherit Metab Dis. 2021;44(3):521–33.PubMed
6.
go back to reference Hobson-Webb LD, Austin SL, Bali DS, Kishnani PS. The electrodiagnostic characteristics of Glycogen Storage Disease Type III. Genet Med. 2010;12(7):440–5.PubMed Hobson-Webb LD, Austin SL, Bali DS, Kishnani PS. The electrodiagnostic characteristics of Glycogen Storage Disease Type III. Genet Med. 2010;12(7):440–5.PubMed
7.
go back to reference Kishnani PS, Austin SL, Arn P, Bali DS, Boney A, Case LE, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12(7):446–63.PubMed Kishnani PS, Austin SL, Arn P, Bali DS, Boney A, Case LE, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12(7):446–63.PubMed
8.
go back to reference Preisler N, Laforet P, Madsen KL, Prahm KP, Hedermann G, Vissing CR, et al. Skeletal muscle metabolism is impaired during exercise in glycogen storage disease type III. Neurology. 2015;84(17):1767–71.PubMed Preisler N, Laforet P, Madsen KL, Prahm KP, Hedermann G, Vissing CR, et al. Skeletal muscle metabolism is impaired during exercise in glycogen storage disease type III. Neurology. 2015;84(17):1767–71.PubMed
9.
go back to reference Preisler N, Pradel A, Husu E, Madsen KL, Becquemin MH, Mollet A, et al. Exercise intolerance in Glycogen Storage Disease Type III: weakness or energy deficiency? Mol Genet Metab. 2013;109(1):14–20.PubMed Preisler N, Pradel A, Husu E, Madsen KL, Becquemin MH, Mollet A, et al. Exercise intolerance in Glycogen Storage Disease Type III: weakness or energy deficiency? Mol Genet Metab. 2013;109(1):14–20.PubMed
10.
go back to reference Hoogeveen IJ, de Boer F, Boonstra WF, van der Schaaf CJ, Steuerwald U, Sibeijn-Kuiper A, et al. Effects of acute nutritional ketosis during exercise in adults with glycogen storage disease type IIIa are phenotype-specific: an investigator-initiated, randomized, crossover study. J Inherit Metab Dis. 2021;44(1):226–39.PubMed Hoogeveen IJ, de Boer F, Boonstra WF, van der Schaaf CJ, Steuerwald U, Sibeijn-Kuiper A, et al. Effects of acute nutritional ketosis during exercise in adults with glycogen storage disease type IIIa are phenotype-specific: an investigator-initiated, randomized, crossover study. J Inherit Metab Dis. 2021;44(1):226–39.PubMed
11.
go back to reference Decostre V, Laforet P, Nadaj-Pakleza A, De Antonio M, Leveugle S, Ollivier G, et al. Cross-sectional retrospective study of muscle function in patients with glycogen storage disease type III. Neuromuscul Disord. 2016;26(9):584–92.PubMed Decostre V, Laforet P, Nadaj-Pakleza A, De Antonio M, Leveugle S, Ollivier G, et al. Cross-sectional retrospective study of muscle function in patients with glycogen storage disease type III. Neuromuscul Disord. 2016;26(9):584–92.PubMed
12.
go back to reference Lees MJ, Wilson OJ, Hind K, Ispoglou T. Muscle quality as a complementary prognostic tool in conjunction with sarcopenia assessment in younger and older individuals. Eur J Appl Physiol. 2019;119(5):1171–81.PubMedPubMedCentral Lees MJ, Wilson OJ, Hind K, Ispoglou T. Muscle quality as a complementary prognostic tool in conjunction with sarcopenia assessment in younger and older individuals. Eur J Appl Physiol. 2019;119(5):1171–81.PubMedPubMedCentral
13.
go back to reference Shin S, Valentine RJ, Evans EM, Sosnoff JJ. Lower extremity muscle quality and gait variability in older adults. Age Ageing. 2012;41(5):595–9.PubMed Shin S, Valentine RJ, Evans EM, Sosnoff JJ. Lower extremity muscle quality and gait variability in older adults. Age Ageing. 2012;41(5):595–9.PubMed
14.
go back to reference Gadelha AB, Neri SGR, Bottaro M, Lima RM. The relationship between muscle quality and incidence of falls in older community-dwelling women: an 18-month follow-up study. Exp Gerontol. 2018;110:241–6.PubMed Gadelha AB, Neri SGR, Bottaro M, Lima RM. The relationship between muscle quality and incidence of falls in older community-dwelling women: an 18-month follow-up study. Exp Gerontol. 2018;110:241–6.PubMed
15.
go back to reference Jacques MF, Onambele-Pearson GL, Reeves ND, Stebbings GK, Smith J, Morse CI. Relationships between muscle size, strength, and physical activity in adults with muscular dystrophy. J Cachexia Sarcopenia Muscle. 2018;9(6):1042–52.PubMedPubMedCentral Jacques MF, Onambele-Pearson GL, Reeves ND, Stebbings GK, Smith J, Morse CI. Relationships between muscle size, strength, and physical activity in adults with muscular dystrophy. J Cachexia Sarcopenia Muscle. 2018;9(6):1042–52.PubMedPubMedCentral
16.
go back to reference Chastin SF, Ferriolli E, Stephens NA, Fearon KC, Greig C. Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults. Age Ageing. 2012;41(1):111–4.PubMed Chastin SF, Ferriolli E, Stephens NA, Fearon KC, Greig C. Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults. Age Ageing. 2012;41(1):111–4.PubMed
17.
go back to reference Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, et al. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci. 2001;56(5):209. Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, et al. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci. 2001;56(5):209.
18.
go back to reference Sentner CP, Hoogeveen IJ, Weinstein DA, Santer R, Murphy E, McKiernan PJ, et al. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J Inherit Metab Dis. 2016;39(5):697–704.PubMedPubMedCentral Sentner CP, Hoogeveen IJ, Weinstein DA, Santer R, Murphy E, McKiernan PJ, et al. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J Inherit Metab Dis. 2016;39(5):697–704.PubMedPubMedCentral
19.
go back to reference Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age. BMJ. 1993;306(6890):1437–40.PubMedPubMedCentral Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age. BMJ. 1993;306(6890):1437–40.PubMedPubMedCentral
20.
go back to reference Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.PubMed Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84.PubMed
21.
go back to reference Marzorati M, Porcelli S, Bellistri G, Morandi L, Grassi B. Exercise testing in late-onset glycogen storage disease type II patients undergoing enzyme replacement therapy. Neuromuscul Disord. 2012;22(1):230. Marzorati M, Porcelli S, Bellistri G, Morandi L, Grassi B. Exercise testing in late-onset glycogen storage disease type II patients undergoing enzyme replacement therapy. Neuromuscul Disord. 2012;22(1):230.
22.
go back to reference Ørngreen MC, Vissing J. Treatment opportunities in patients with metabolic myopathies. Curr Treat Options Neurol. 2017;19(11):37.PubMed Ørngreen MC, Vissing J. Treatment opportunities in patients with metabolic myopathies. Curr Treat Options Neurol. 2017;19(11):37.PubMed
23.
25.
go back to reference Danneskiold-Samsoe B, Bartels EM, Bulow PM, Lund H, Stockmarr A, Holm CC, et al. Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiol (Oxf). 2009;197(Suppl 673):1–68. Danneskiold-Samsoe B, Bartels EM, Bulow PM, Lund H, Stockmarr A, Holm CC, et al. Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiol (Oxf). 2009;197(Suppl 673):1–68.
26.
go back to reference Bohm S, Marzilger R, Mersmann F, Santuz A, Arampatzis A. Operating length and velocity of human vastus lateralis muscle during walking and running. Sci Rep. 2018;8(1):5066–75.PubMedPubMedCentral Bohm S, Marzilger R, Mersmann F, Santuz A, Arampatzis A. Operating length and velocity of human vastus lateralis muscle during walking and running. Sci Rep. 2018;8(1):5066–75.PubMedPubMedCentral
27.
go back to reference Crockett K, Ardell K, Hermanson M, Penner A, Lanovaz J, Farthing J, et al. The relationship of knee-extensor strength and rate of torque development to sit-to-stand performance in older adults. Physiother Can. 2013;65(3):229–35.PubMedPubMedCentral Crockett K, Ardell K, Hermanson M, Penner A, Lanovaz J, Farthing J, et al. The relationship of knee-extensor strength and rate of torque development to sit-to-stand performance in older adults. Physiother Can. 2013;65(3):229–35.PubMedPubMedCentral
28.
go back to reference Fukagawa NK, Brown M, Sinacore DR, Host HH. The relationship of strength to function in the older adult. J Gerontol A Biol Sci Med Sci. 1995;50A(Special_Issue):55–9. Fukagawa NK, Brown M, Sinacore DR, Host HH. The relationship of strength to function in the older adult. J Gerontol A Biol Sci Med Sci. 1995;50A(Special_Issue):55–9.
29.
go back to reference van den Berg LE, Favejee MM, Wens SC, Kruijshaar ME, Praet SF, Reuser AJ, et al. Safety and efficacy of exercise training in adults with Pompe disease: evalution of endurance, muscle strength and core stability before and after a 12 week training program. Orphanet J Rare Dis. 2015;10:87.PubMedPubMedCentral van den Berg LE, Favejee MM, Wens SC, Kruijshaar ME, Praet SF, Reuser AJ, et al. Safety and efficacy of exercise training in adults with Pompe disease: evalution of endurance, muscle strength and core stability before and after a 12 week training program. Orphanet J Rare Dis. 2015;10:87.PubMedPubMedCentral
30.
go back to reference Bostock EL, O’Dowd DN, Payton CJ, Smith D, Orme P, Edwards BT, et al. The effects of resistance exercise training on strength and functional tasks in adults with limb-girdle, becker, and facioscapulohumeral dystrophies. Front Neurol. 2019;10:1216.PubMedPubMedCentral Bostock EL, O’Dowd DN, Payton CJ, Smith D, Orme P, Edwards BT, et al. The effects of resistance exercise training on strength and functional tasks in adults with limb-girdle, becker, and facioscapulohumeral dystrophies. Front Neurol. 2019;10:1216.PubMedPubMedCentral
31.
go back to reference Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269–79.PubMed Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269–79.PubMed
32.
go back to reference Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambele-Pearson GL. Combined effects of body composition and ageing on joint torque, muscle activation and co-contraction in sedentary women. Age (Dordr). 2014;36(3):9652–61.PubMedCentral Tomlinson DJ, Erskine RM, Morse CI, Winwood K, Onambele-Pearson GL. Combined effects of body composition and ageing on joint torque, muscle activation and co-contraction in sedentary women. Age (Dordr). 2014;36(3):9652–61.PubMedCentral
33.
go back to reference McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 2014;3(1):9.PubMedPubMedCentral McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 2014;3(1):9.PubMedPubMedCentral
34.
go back to reference Sims DT, Onambele-Pearson GL, Burden A, Payton C, Morse CI. Specific force of the vastus lateralis in adults with achondroplasia. J Appl Physiol. 2018;124(3):696–703.PubMed Sims DT, Onambele-Pearson GL, Burden A, Payton C, Morse CI. Specific force of the vastus lateralis in adults with achondroplasia. J Appl Physiol. 2018;124(3):696–703.PubMed
35.
go back to reference Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570.PubMedPubMedCentral Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570.PubMedPubMedCentral
36.
go back to reference Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–45.PubMedPubMedCentral Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–45.PubMedPubMedCentral
37.
go back to reference Poole DC, Jones AM. Measurement of the maximum oxygen uptake V̇o(2max): V̇o(2peak) is no longer acceptable. J Appl Physiol. 2017;122(4):997–1002.PubMed Poole DC, Jones AM. Measurement of the maximum oxygen uptake V̇o(2max): V̇o(2peak) is no longer acceptable. J Appl Physiol. 2017;122(4):997–1002.PubMed
38.
go back to reference American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.
39.
go back to reference Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.PubMed Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):2020–7.PubMed
40.
go back to reference Whipp BJ, Ward SA, Wasserman K. Respiratory markers of the anaerobic threshold. Adv Cardiol. 1986;35:47–64.PubMed Whipp BJ, Ward SA, Wasserman K. Respiratory markers of the anaerobic threshold. Adv Cardiol. 1986;35:47–64.PubMed
41.
go back to reference Morse CI, Degens H, Jones DA. The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol. 2007;100(3):267–74.PubMed Morse CI, Degens H, Jones DA. The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol. 2007;100(3):267–74.PubMed
42.
go back to reference Massey G, Evangelidis P, Folland J. Influence of contractile force on the architecture and morphology of the quadriceps femoris. Exp Physiol. 2015;100(11):1342–51.PubMed Massey G, Evangelidis P, Folland J. Influence of contractile force on the architecture and morphology of the quadriceps femoris. Exp Physiol. 2015;100(11):1342–51.PubMed
43.
go back to reference Morse CI, Thom JM, Birch KM, Narici MV. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand. 2005;183(3):291–8.PubMed Morse CI, Thom JM, Birch KM, Narici MV. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand. 2005;183(3):291–8.PubMed
44.
go back to reference Berg HE, Tedner B, Tesch PA. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand. 1993;148(4):379–85.PubMed Berg HE, Tedner B, Tesch PA. Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand. 1993;148(4):379–85.PubMed
45.
go back to reference Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol. 2004;91(1):116–8.PubMed Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol. 2004;91(1):116–8.PubMed
46.
go back to reference Weng L, Tirumalai AP, Lowery CM, Nock LF, Gustafson DE, Von Behren PL, et al. US extended-field-of-view imaging technology. Radiology. 1997;203(3):877–80.PubMed Weng L, Tirumalai AP, Lowery CM, Nock LF, Gustafson DE, Von Behren PL, et al. US extended-field-of-view imaging technology. Radiology. 1997;203(3):877–80.PubMed
47.
go back to reference Scott JM, Martin DS, Ploutz-Snyder R, Caine T, Matz T, Arzeno NM, et al. Reliability and validity of panoramic ultrasound for muscle quantification. Ultrasound Med Biol. 2012;38(9):1656–61.PubMed Scott JM, Martin DS, Ploutz-Snyder R, Caine T, Matz T, Arzeno NM, et al. Reliability and validity of panoramic ultrasound for muscle quantification. Ultrasound Med Biol. 2012;38(9):1656–61.PubMed
48.
go back to reference Grant D, Tomlinson D, Tsintzas K, Kolic P, Onambele-Pearson G. Displacing sedentary behaviour with light intensity physical activity spontaneously alters habitual macronutrient intake and enhances dietary quality in older females. Nutrients. 2020;12:8. https://doi.org/10.3390/nu12082431.CrossRef Grant D, Tomlinson D, Tsintzas K, Kolic P, Onambele-Pearson G. Displacing sedentary behaviour with light intensity physical activity spontaneously alters habitual macronutrient intake and enhances dietary quality in older females. Nutrients. 2020;12:8. https://​doi.​org/​10.​3390/​nu12082431.CrossRef
49.
go back to reference Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–93.PubMed Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–93.PubMed
50.
go back to reference Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–83.PubMed Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–83.PubMed
51.
go back to reference McCaffery M, Beebe A. Pain: clinical manual for nursing practice. Mosby; 1989. McCaffery M, Beebe A. Pain: clinical manual for nursing practice. Mosby; 1989.
52.
go back to reference Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–8.PubMed Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985;131(5):700–8.PubMed
53.
go back to reference Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Lippincott Williams & Wilkins; 2005. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Lippincott Williams & Wilkins; 2005.
54.
go back to reference Campbell SC. A comparison of the maximum voluntary ventilation with the forced expiratory volume in one second: an assessment of subject cooperation. J Occup Med. 1982;24(7):531–3.PubMed Campbell SC. A comparison of the maximum voluntary ventilation with the forced expiratory volume in one second: an assessment of subject cooperation. J Occup Med. 1982;24(7):531–3.PubMed
55.
go back to reference Fox SM, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404–32.PubMed Fox SM, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404–32.PubMed
Metadata
Title
Aerobic capacity and skeletal muscle characteristics in glycogen storage disease IIIa: an observational study
Authors
Philip J. Hennis
Elaine Murphy
Rick I. Meijer
Robin H. Lachmann
Radha Ramachandran
Claire Bordoli
Gurinder Rayat
David J. Tomlinson
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2022
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-022-02184-1

Other articles of this Issue 1/2022

Orphanet Journal of Rare Diseases 1/2022 Go to the issue